Diffusion-weighted MRI

Acquisition, Analysis and Applications

Jan Hering Biomedical Imaging Algorithms Group, FEL ČVUT

Why diffusion?

White matter tracts, highly organized tissue => Directional diffusion hindrance

Water = free, unhindered diffusion

Diffusion in tissue => hindered by cell membranes etc.

Acquisition

Protons in B₀ field

Simple model: Apparent Diffusion Coefficient (ADC)

$$\frac{S_{b>0}}{S_{b=0}} = e^{-b \cdot ADC}$$

We approximate the signal loss as an exponential decay steared by the gradient strength (*b value*) and the omnidirectional diffusivity (the ADC)

ADC can reveal areas of restricted diffusivity as a result of stroke

Directional model: Diffusion Tensor Imaging

DTI fails to model fiber crossings – we need higher order models (and pay for them with more acquisitions)

$$\mathcal{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix}$$

FA map

Principal direction

Streamline Tracking Fiber Tractography

2D View

The directional models allows for estimating the paths of white matter tracts and evaluate f.i. how different regions of the brain are interconnected.

Motion and artifacts

- We want precise tractography, thus need higher order models
- They require
 - more gradient images (3D-volumes)

b = 1000

• at higher *b-values*

eddy-currents, gross motion

eddy	v-currents	higher	h =	lower SNR
cuu	y-currents,	Ingliei	N –	

Examples of images at different *b* values

Robust artifact and motion correction

- Best method prospective correction with motion tracking
- When not available → How to make a robust retrospective correction?

Hering, J., Wolf, I., & Maier-Hein, K. H. (2016). Multi-Objective Memetic Search for Robust Motion and Distortion Correction in Diffusion MRI. *IEEE transactions on medical imaging*, *35*(10), 2280-2291

Effects of robust motion correction

Recent applications

DWI meets AI

Applications : Al for prostate

0.30 0.45 0.60 0.75

Schelb, Patrick, et al. "Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment." *Radiology* (2019): 190938.

Applications : Mamma-screening

Bickelhaupt, Sebastian, et al. "Fast and noninvasive characterization of suspicious lesions detected at breast cancer X-ray screening: capability of diffusion-weighted MR imaging with MIPs." *Radiology* 278.3 (2015): 689-697

Applications : Al for virtual contrast

Input data: native T1w, T2w, FLAIR, DWI (b=0, b=1200 mm²/s), SWI.

Contrast data: ce-T1w, intravenous (Gd-DOTA, Dotarem)

Kleesiek, Jens et al. (2019). Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. *Investigative Radiology*. 54. 1. 10.1097/RLI.000000000000583.

Applications : Tracking for navigation

Planning and intra-operative navigation in neurosurgery

synaptive medical BrightMatter™ Guide

Research : Can we fully trust tractography?

[...] most state-of-the-art algorithms produce tractograms containing **90% of the ground truth bundles**

However, they may contain **more invalid than valid bundles**, and half of these invalid bundles occur systematically [...]

Maier-Hein, K.H., Neher, P.F., Houde, J. *et al.* The challenge of mapping the human connectome based on diffusion tractography. *Nature Communications* **8**, 1349 (2017) doi:10.1038/s41467-017-01285-x

Discussion

Thank your for your attention!

For discussion:

- DWI has nice applications, can improve diagnosis, but can we afford it?
- The economic pressure on radiology is immense, maybe we should start researching how to achieve the same as presented, but with less data, other modalities?