

Přehled bodů

- Kryogenní technika v MR obrovský skok kupředu
- Gradienty Vega HP nový pohled na specifikace
- Urychlovací techniky Compress Sensing
- Nové směry technik 3D APT/CEST
- Kvalitní provedení MR možnosti využítí v RT
- Informační paradox –rychlá měření s velkou informační hustotou
- Al v MR oblasti

Upozornění:

následující slidy mohou obsahovat informace typu výzkumné práce, inspirace či návrh řešení a nejsou komerčně dostupné. Produkty komerčně dostupné jsou označeny jako produkt.

Přehled bodů

- Kryogenní technika v MR obrovský skok kupředu
- Gradienty Vega HP nový pohled na specifikace
- Urychlovací techniky Compress Sensing
- Nové směry technik 3D APT/CEST
- Kvalitní provedení MR možnosti využítí v RT
- Informační paradox –rychlá měření s velkou informační hustotou
- Al v MR oblasti

Helium-free MR operations = new big demand to decrease consumption

Forget about helium

Micro-cooling technology

From ~1,500 liters of liquid helium...

Forget about helium

Micro-cooling technology

... to ~7 liters

Low siting and construction costs

product ...

No vent-pipe

No need for long and complex vent-pipe

- Installation
- Maintenance to avoid obstruction and ice formation
- Quench and patient evacuation safety procedures
- Fire prevention measurements

Up to \$200,000

product

900 kg lighter.¹

900 kg lighter¹ for flexible Installations and potentially reduced floor adaptations

PHILIPS

55 cm FOV

FOV - 55x55x50cm -

B0 homogenita - 1.8ppm na 50 cm Linearita gradientů – 1.4% na 50 cm Gradienty : 45/200 mT/m-T/m/s

Plně digitální systém od cívky až po rekonstuktor

mDIXON XD FFE 2.0 x 2.0 x 2.0 mm 1 stack, 14 sec

DWIBS 4.9 x 5.2 x 6.0 mm

Ingenia Ambition X

Přehled bodů

- Kryogenní technika v MR obrovský skok kupředu
- Gradienty Vega HP nový pohled na specifikace
- Urychlovací techniky Compress Sensing
- Nové směry technik 3D APT/CEST
- Kvalitní provedení MR možnosti využítí v RT
- Informační paradox –rychlá měření s velkou informační hustotou
- Al v MR oblasti

Based on 16+ years of 3.0T MR design expertise

Consistently enhancing fidelity and speed

Based on 16+ years of 3.0T Gradient design expertise

Introducing Ingenia Eltion Vega HP gradients

Ingenia Elition Vega HP

Fidelity? and speed, by design

Prostate DWI

Ingenia Elition Vega HP Fidelity

High Fidelity

G-max	45 mT/m	
Slew-max	220 T/m/s	
Pmax	1.60 MW	
Linearity	< 0.5%	
Grms	27 mT/m	
Fidelity	> 99.97%	

HIFI [high fidelity]: sound reproduction over the full range of audible frequencies with very little distortion.

Gradient fidelity: gradient generation over the full range of necessary frequencies with very little distortion.

Ingenia Elition Vega HP

Gradient fidelity Vega HP: the deviation of the effective- from the targeted gradient waveform will never exceed more than 0.03%.

Ingenia Elition Vega HP Efficiency

High Fidelity

G-max	45 mT/m	
Slew-max	220 T/m/s	
Pmax	1.60 MW	
Linearity	< 0.5%	
Grms	27 mT/m	
Fidelity	> 99.97%	_

High Efficienc Y

Gradient design

- Thick gradient coil design
- Direct cooling using a thermally conductive substrate

Manufacturing

- Cutting precision < 0.1 mm
- Lateral- and rotational alignment through magnetic locking < 0.2 mm

Accurate water jet cutting approach

Lateral- and rotational alignment

Vega HP Gradients Fidelity and speed, by design

High Fidelity		
G-max	45 mT/m	
Slew-max	220 T/m/s	
Pmax	1.60 MW	
Linearity	< 0.5%	
Grms	27 mT/m	_
Fidelity	> 99.97%	T

Short TR (short scantime)
Fast EPI (low distortion)
Short TE (high SNR)

New gradient performance assessment – complex parameters

Přehled bodů

- Kryogenní technika v MR obrovský skok kupředu
- Gradienty Vega HP nový pohled na specifikace
- Urychlovací techniky Compress Sensing
- Nové směry technik 3D APT/CEST
- Kvalitní provedení MR možnosti využítí v RT
- Informační paradox –rychlá měření s velkou informační hustotou
- Al v MR oblasti

New technologies on the board

COMPRESSED SENSE How to accelerate without loosing IQ? Or how to improve IQ within same time?

Philips vision on Speed

Compressed SENSE enhances capacity

Up to 50% acceleration with virtually equal image quality 1

2D

All anatomical contrasts

(TSE, FFE, T1, T2, PD, IR, bFFE,...)

3D

Compatible with 88% of your daily scans²

- 1 Compared to Philips scans without Compressed SENSE.
- 2 Valid for Philips Ingenia systems. Based on aggregated global clinical utilization data and C-SENSE sequence compatibility criteria.

Accelerating 2D and 3D sequences to cover 88% of your Clinical operations

How C- Sense is working?

Short exams across your procedure mix

Example: Hennepin County Medical Center. Minneapolis. USA

Results from case studies are not predictive of results in other cases. Results in other cases may vary.

Up to 50% acceleration with virtually equal IQ1

2D and 3D-based Clinical Brain Examcard

¹ Compared to Philips scans without Compressed SENSE. Results from case studies are not predictive of results in other cases. Results in other cases may vary. Courtesy: Kumamoto Chuo Hospital, Japan, Ingenia 1.5T CX

Speed for everyone... even for challenging patients

Patient with deep brain stimulator and spine implant

Challenges

- 1. Safety (SAR<0.1W/kg)
- 2. Diagnostic IQ
- 3. Examtime < 30min

Without C-SENSE

- Low SAR protocols
- Poor IQ
- Examtime: 49min

With C-SENSE

- Low SAR protocols
- Diagnostic IQ
- Examtime: 28min

		C 00:28:56
1	\$ SURVEY	
0	TSE PREP	
æ	# T2_TSE_SAG	Geo2
В	T2_TSE_AX_MS	Geo3
	T1_TSE_AX	Geo4
	T1_TSE_AX	Geo5
В	T1_TSE_SAG	Geo6

Courtesy: Bethesda Hospital East. Boynton Beach. Florida, USA

>150 kg Spine example

Ingenia Elition 3.0T X

T2w TSE dS SENSE 1 0.6 x 1.1 x 4.0 mm

2.5 W/kg (first level SAR mode) 7:33 min

T2w TSE Compressed SENSE 2 0.6 x 1.1 x 4.0 mm

1.9W.kg (normal level SAR mode) 3:21 min

Cardiac example

Conventional dS SENSE 1.5 to 2 BH: 15-17 sec

With C-SENSE C-SENSE 2 to 3 BH: 10-12 sec

T2w TSE BB 1.4 x 1.8 x 8.0 mm

T2w STIR BB 1.4 x 1.8 x 8.0 mm

T1w TSE BB 1.4 x 1.8 x 8.0 mm

Ingenia Ambition 1 5T)

Přehled bodů

- Kryogenní technika v MR obrovský skok kupředu
- Gradienty Vega HP nový pohled na specifikace
- Urychlovací techniky Compress Sensing
- Nové směry technik 3D APT/CEST
- Kvalitní provedení MR možnosti využítí v RT
- Informační paradox –rychlá měření s velkou informační hustotou
- Al v MR oblasti

New technologies on the board

3D APT

How to diagnose more exactly?

This year, Philips continues to lead the way in elevating Neuro diagnostics

First MultiTransmit

Leader in Neuro Clinical applications

8 new Neuro applications

Fast Brain

First digital Broadband MR

mDIXON XD

MultiVane XD

First Compact 3.0T

2000

This year, Philips continues to lead the way in elevating Neuro diagnostics

5 new Neuro applications

Fast Brain

MultiVane XD

First Compact 3.0T

2000

First MultiTransmit

SmartBrain

analog

2005

Broadband MR

2010

8 new Neuro applications

New technologies on the board

Brain tumors/staging

3D APT – How does it work?

CEST - Hence, the principle of CEST imaging is simple: Given a chemical species of interest, capable of exchanging its

¹H protons with those of water, a radiofrequency pulse is applied at (**ONe** of) its resonant frequency(ies) in order to reach a saturation state.

3D APT is a **chemical exchange saturation transfer (CEST)** technique. In CEST imaging, a frequency-selective saturation prepulse is applied to the resonance frequency of hydrogen in non-water and non-fat molecules. In the case of 3D APT, this is +3.5 ppm, which is the resonance frequency of hydrogen in the amide molecule. The saturation pulse is applied for two seconds in order to reduce the MR signal of amide protons.

In vivo, amide protons continually exchange with water protons in a process known as **chemical exchange**. As the proton carries the applied saturation, this transfer results in water molecules becoming saturated. The saturated water molecules lead to a decrease in the MR signal within the voxel.

An overview of CEST MRI for non-MR physicists

B.Wu, ¹ G. Warnock, ² M. Zaiss, ³ C. Lin, ¹ M. Chen, ⁴ Z. Zhou, ¹ L. Mu, ⁵ D. Nanz, ⁶ R. Tuura, ⁷ and G. Delso: EJNMMI Phys. 2016 Dec; 3(1): 19.

3D APT – How does it work?

- 1.Proteins with amide protons are surrounded by water molecules that are moving around.
- 2. Saturation prepulse on protein's amide proton frequency nulls MR signal of these protons.
- 3. As a result of chemical exchange, the nulled protons move from the protein to water molecules.

MR signal of water is high.

MR signal of water is high.

MR signal of water is reduced due to the proton exchange. In APT. This signal change is used to calculate an APT map that is sensitive to the concentration of the protein

3D APT – How does it work?

As the amide proton resonates at +3.5 ppm, a comparison is made with the MR signal at -3.5 ppm, the opposite frequency on the spectrum. This comparison is expressed as the **asymmetry of the magnetization transfer ratio** (MTRasym).

The greater the MTRasym, the greater the presence of amide protons. In the following figure, the green stars show MTR asymmetry between amide resonant frequency at 3.5ppm and -3.5 ppm, which indicates the presence of amide within the voxel.

How did Philips make 3D APT work in clinical practice?

Robustness

MultiTransmit 4D
Patient-adaptive RF saturation

Speed

mDIXON XDFast integrated B0 correction

Ease of use

Optimized viewing Color maps and scaling

Leading in Neuro-oncology with Philips 3D APT

A new strategy to enhance confidence in grading gliomas

Leading in Neuro-oncology with Philips 3D APT

A new strategy to enhance confidence in glioma follow up assesment

Philips 3D APT for brain tumor follow up

Clinical case: Glioblastoma multiforme

Pre Surgery

Immediate Post Surgery

6 months follow up

Philips 3D APT

Ability to help differentiating low-grade from high grade gliomas

Přehled bodů

- Kryogenní technika v MR obrovský skok kupředu
- Gradienty Vega HP nový pohled na specifikace
- Urychlovací techniky Compress Sensing
- Nové směry technik 3D APT/CEST
- Kvalitní provedení MR možnosti využítí v RT
- Informační paradox –rychlá měření s velkou informační hustotou
- Al v MR oblasti

Experience the true potential and drive the impact of MRI

MR + CT workflow

MR-only radiotherapy workflow

- Benefit from MRI's superior softtissue contrast
- Eliminate tedious and errorprone MR-CT registration
- Lower costs and make MR simulation more affordable
- Simplify workflows and reduce patient burden

Philips MRCAT clinical applications

MRCAT Brain at a glance

Attenuation maps and anatomical information based on MR data only

Ingenia MR-RT 1.5T. Images courtesy of Turku University Hospital, Finland. This material is not inteded for distribution in the USA

A single-scan approach

Single, fast 3D mDIXON sequence can be acquired in **a few minutes** to provide:

- Attenuation maps for dose calculations
- Detailed submillimeter resolution anatomical information for contouring

Anatomical and density information originate from the same scan, which ensures spatial and temporal consistency – no registration is needed

MRCAT Pelvis at a glance

Perform dose calculations based on MR data only

50

MR-only workflow for contouring and planning

Attenuation maps and auto-contours based on MR data only

MR imaging

Auto-Contouring MR-based contours

MRCAT Prostate

Density information

Within 20 minutes and in a repeatable 'one-click' workflow

MRCAT = MR for Calculating ATtenuation

CT-like density information at the MR console

Continuous Hounsfield Units

Comprehensive MR-only simulation

Female pelvis

Results from case studies are not predictive of results in other cases. Results in other cases may vary.

mDIXON XD FFE XD 4:15 min 1.4x1.4x1.4 mm

T2W TSE 3D 5:49 min 1.2x1.2x1.2 mm

T1W TFE + contrast 3D 3:01 min 1.5 x 1.5 x 1.5 mm

Courtesy: Turku University Hospital (TYKS) Turku, Finland. Ingenia MR-RT 1.5T

Přehled bodů

- Kryogenní technika v MR obrovský skok kupředu
- Gradienty Vega HP nový pohled na specifikace
- Urychlovací techniky Compress Sensing
- Nové směry technik 3D APT/CEST
- Kvalitní provedení MR možnosti využítí v RT
- Informační paradox –rychlá měření s velkou informační hustotou
- Al v MR oblasti

Myocardial strain – MYOSTRAIN

Strain Identifies Heart Failure Early

Strain often detects heart dysfunction before ejection fraction declines

Senc – myocardial strain

SENC*

Pixel-wise measurement of myocardial strain

SENC* provides strain-encoded time-resolved images from which quantitative strain information per voxel can be extracted

Available to selected customers only, after explicit alignment with the MR Marketing Department in Best, The Netherlands.

Image processing by courtesy of Myocardial Solutions Inc., USA.

Přehled bodů

- Kryogenní technika v MR obrovský skok kupředu
- Gradienty Vega HP nový pohled na specifikace
- Urychlovací techniky Compress Sensing
- Nové směry technik 3D APT/CEST
- Kvalitní provedení MR možnosti využítí v RT
- Informační paradox –rychlá měření s velkou informační hustotou
- AI v MR oblasti

BlueSeal benefits from Al-driven magnet controls

SmartExam: learns and automates MR planning

Automates planning for 80% of scans

- Learns scanning preferences from operator
- Uses 3D model with anatomical landmarks
- Automatically positions imaging stack
- E.G. = Brain, Spine, Shoulder, Knee, Breast

Contact-less patient sensing 2.0

WIP

Al 3D camera based patient and coil recognition

Workflow benefits:

- Patient biometric information
- Guided patient preparation
- Image planning through automatic organ localization
- Patient motion monitoring and motion management

Deep learning motion correction

Deep learning motion correction is for research application only and not for clinical use.

Research performed in collaboration with our clinical partners under a research agreement. Image courtesy: Dr. J. Andre,
University of Washington

Automated diagnostic support

Longitudinal tracking of glioblastoma contrast-enhancing tumor using AI

Driving towards a single patient view

The right diagnosis, at the right time, leading to the right therapy

Work in progress. Not available for sale in the U.S.A.

Your digital twin

Detailed digital models of anatomy, physiology, and pathology

Děkuji vám za pozornost!

Otázky?