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Abstract 

In neurocritical care, particularly in traumatic brain injury (TBI) cases, one of the 
primary goals is to ensure sufficient cerebral blood flow to prevent secondary brain 
injury. A key factor in achieving this is maintaining cerebral perfusion pressure (CPP) 
within an optimal range. The pressure reactivity index (PRx), calculated as a moving-
window Pearson’s correlation between mean arterial pressure (MAP) and intracranial 
pressure (ICP), is commonly used to determine this optimal CPP. However, false-
positive PRx values can occur due to artifacts in arterial blood pressure (ABP) or ICP 
signals, potentially leading to incorrect interpretation of cerebral autoregulation state. 

In this thesis, I developed an artifact detection algorithm based on short-time 
Fourier transform (STFT). The algorithm was first tested on simulated stereotypical 
artifacts in ABP signals of various shapes and durations, achieving sensitivity and 
specificity rates above 93%. It was then validated on real ABP data with annotated 
artifacts, where it achieved a sensitivity of 92% and a specificity of 90%. 

As a result, I created a Python plug-in for the ICM+ software that integrates the 
developed detection algorithm and calculates a PRx reliability index. The PRx reliability 
index indicates the percentage of artifacts within a given time interval, allowing for an 
assessment of the quality of the PRx value during that period. This plug-in can be used 
for both offline and real-time ABP analysis, potentially improving the accuracy and 
interpretation of PRx indices. 

 
Keywords 
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1 Introduction 
 
  

The availability of high-frequency biological signal recordings presents an 
opportunity for advanced calculations and analyses, offering deeper insights into 
physiological processes [1]. In neurocritical care, particularly in cases of traumatic brain 
injury (TBI), one of the key objectives is to ensure adequate cerebral blood flow and 
prevent secondary brain injury. A crucial aspect of achieving this is maintaining 
cerebral perfusion pressure (CPP) within an optimal range [2–4]. One method for 
determining this optimal CPP is through the pressure reactivity index (PRx) [5], which is 
calculated as a moving-window Pearson’s correlation coefficient between mean 
arterial pressure (MAP) and intracranial pressure (ICP) [6]. Negative PRx values indicate 
normal cerebral autoregulation, whereas positive values, particularly those greater 
than 0.3, may suggest a failure in autoregulation [6–9]. However, false-positive values 
of PRx can arise due to artifacts in arterial blood pressure (ABP) or ICP signals [10]. 

An artifact is a part of a biosignal that does not have a physiologic origin in the 
examined organ [11]. Artifacts in both ABP and ICP signals can arise from a variety of 
sources, including biological and technical factors. Due to the nature of neurocritical 
care, artifacts in ICP signals are less common, as the ICP catheter, once installed, 
typically remains undisturbed, which minimizes the occurrence of artifacts. In contrast, 
artifacts in ABP signals are encountered more frequently. Therefore, this thesis will 
primarily focus on detecting artifacts in ABP signals. 

Several methods have already been developed to detect and remove artifacts 
from ABP signals, including machine learning techniques, pulse image analysis [12–15], 
time series analysis [16], and the use of numerical averages (trend data)[13, 17–19]. 
Although manual detection and removal of artifacts is possible, it is a time-consuming 
process. Therefore, in this work, we aim to develop an artifact detection algorithm 
based on the short-time Fourier transform (STFT). To our knowledge, STFT has not 
been previously applied for artifact detection in ABP signals, though it has been used in 
studies involving electroencephalogram (EEG) and photoplethysmogram (PPG) signals 
[20–22]. We selected STFT for its simplicity and efficiency, as it does not require large 
annotated datasets like machine learning algorithms, and can operate more quickly, 
making it suitable for real-time data analysis. 
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2 State of the Art 
 
2.1 Biological signals 
 

A biological signal, or biosignal, is a signal produced by the living organism’s 
existence or caused by physical action on an organism from the outside [23]. From the 
physical point of view, biosignals do not have to be just electrical signals. We can 
divide biosignals into several types: bioelectric, biomagnetic, bioacoustic, biochemical, 
biomechanical, and biooptical [11]. This thesis will focus on biomechanical signals such 
as arterial blood pressure and intracranial pressure.  
 

2.1.1 Arterial blood pressure 
 

Arterial blood pressure is the force that blood exerts on the artery walls. Changes 
in blood pressure create a typical waveform (see Figure 2.1). The first slope represents 
blood ejection from the ventricles, where the upper value is systolic pressure. The 
second upstroke represents a relaxation of the ventricles, where the lowest point is 
the diastolic pressure. The dicrotic notch indicates the end of systole and the beginning 
of diastole [24]. 
 

 
Figure 2.1: Arterial blood pressure waveform [25]. 

ABP can be measured invasively and noninvasively. During noninvasive blood 
pressure measurement, a cuff for constriction of the brachial artery and the device 
that captures Korotkoff sounds (auscultatory method) or oscillation of the cuff volume 
(oscillatory method) are used. Unfortunately, it is possible to obtain only discrete 
values from the noninvasive measurement [11].  

We use invasive blood pressure measurement for a thorough analysis because it 
lets us capture continuous waveforms in high-resolution. The measurement is usually 
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done via a catheter inserted in an artery, with data displayed and captured using a vital 
sign monitor, see Figure 2.2. The pressure sensors can be outside of the patient’s body 
(extravascular) or inserted directly into the artery at the catheter tip (intravascular). 
The catheter is a thin plastic tube inside which is usually a few canals. A particular 
canal can be filled with the fluid that transmits pressure changes from the 
measurement place to the pressure sensor (transducer). A transducer converts the 
mechanical impulse of the pressure wave to the electrical signal. Most of the systems 
include a three-way valve near the transducer, which allows a fast flush of the whole 
fluid-filled system (frequently used in practice to flush small blood clots at the tip of 
the catheter). After insertion, the catheter is continuously flushed with a small 
intravenous fluid volume, preventing coagulation [11]. The fluid flow is negligible, 
approximately 3-5 ml per hour, because of the catheter’s small diameter.  
 

 
Figure 2.2: Components of the IBP measurement system [26]. 

For proper measurement of the ABP, the transducer must be at the level of the 
right atrium. If the transducer’s placing is above or below the level, it will lead to the 
measurement error due to the hydrostatic pressure caused by the fluid in the catheter. 
For measurement of the ABP for calculation of cerebral perfusion pressure, the 
transducer must be at the middle cranial fossa level to estimate transcranial perfusion 
[11, 27]. 
 

2.1.2 Intracranial pressure 
 

Monitoring of the intracranial pressure is usually indicated in the case of 
assumed or emerging intracranial hypertension. In many pathological conditions, value 
of ICP is increased, which can lead to blood flow disorders in the brain and subsequent 
neurologic damage.  Measurement of the ICP could be performed epidural, 
subarachnoid, intraventricular, or intraparenchymal (most frequent). The typical 
intracranial pressure value for adults is 8-15 mmHg, according to Lundberg. 
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Physiological ICP's waveform has three characteristic waves (see Figure 2.3). Pressure 
amplitude of the particular waves can change in pathological states. It is essential to be 
aware that the amplitude of the ICP is increasing proportionally to the mean value of 
the intracranial pressure [28]. 
 

 
Figure 2.3: An ICP waveform, where P1 is a percussion wave, P2 is a tidal wave, and P3 is the 

dicrotic wave [29]. 

The Monro-Kellie doctrine is explained by the direct relationship between 
volume and pressure within the cranial cavity (see Figure 2.4). That is, the cranial 
cavity serves as a completely rigid compartment with three incompressible 
components inside: brain, blood, and cerebrospinal fluid (CSF). If the volume of one 
component increases, the volume of the other will decrease to have the intracranial 
pressure remain constant. The compensation can occur through the displacement of 
CSF into the spinal canal or through increased absorption, as well as by reducing 
cerebral blood volume through blood vessel constriction. However, if these 
compensatory mechanisms become overwhelmed—such as when there is a large or 
rapid increase in one of the components—intracranial pressure rises, which can result 
in potential brain damage or herniation. This principle is crucial for clinicians to 
understand how conditions like traumatic brain injury, brain tumors, or hydrocephalus 
affect intracranial dynamics and pressure [28]. 
 



 

 13 

 
Figure 2.4: Monro-Kellie doctrine [30]. 

The gold standard of ICP measurement in terms of technology is still the 
intraventricular catheter with a pressure transducer or in combination with electronic 
measurement. The intraparenchymal catheter positioning method has the same 
informative value as the intraventricular, but is less invasive [28]. 

Nowadays, the intracranial pressure measurement is essential for patients after 
traumatic brain injury because it helps to preserve proper CPP. 
 

2.1.3 Cerebral perfusion pressure 
 

Cerebral perfusion pressure is defined as the difference between MAP and mean 
intracranial pressure. MAP is usually automatically calculated from invasive blood 
pressure. Cerebrovascular pressure autoregulation (Fig. 2.5) protects the brain from 
changes in CPP by regulating the vascular resistance to ensure stable cerebral blood 
flow (CBF). Too low values of CPP can lead to ischemia, and too high values lead to 
hyperaemia. Ensuring an adequate cerebral perfusion pressure helps preventing the 
secondary injury in patients with TBI [3, 28]. 

According to the latest TBI guidelines [31], the desired range of CPP should be 
maintained between 60 and 70 mmHg. However, it should be noted that the ideal 
perfusion pressure may vary from individual to individual [32, 33]. One of the methods 
of calculating optimal CPP (CPPopt) is derived by plotting PRx indices against CPP, 
resulting in a "U" shaped curve, see Figure 2.6. The CPPopt value will be at the point on 
the curve with the lowest PRx index [3, 5]. 



 

 14 

 
 

Figure 2.5: Pressure autoregulation curve [34]. 

 
Figure 2.6: Relation between PRx and CPP values [35]. 

2.1.4 Pressure-reactivity index 
 

The pressure reactivity index is the Pearson correlation coefficient between ICP 
and MAP. PRx indicates the state of autoregulation of blood vessels of the brain. 
Negative values of PRx (ICP decrease with MAP increase) represent normal 
autoregulation, see Figure 2.7. On the contrary, positive values greater than 0.3 
indicate a failure of autoregulation [36]. 
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Figure 2.7: PRx curve. 

2.2 Artifacts and interference signal 
 

An artifact is a part of a biosignal that does not have a physiologic origin in the 
examined organ. Artifacts are well-known from clinical practice, but it is often 
complicated to determine their source and, in some cases, to distinguish them from a 
useful biological signal. We can divide artifacts into technical and biological. Technical 
artifacts include electrostatic potentials, electromagnetic interference, power-line 
noise, impulse interference, and issues with electronic components and circuits. 
Besides, some examination methods have specific artifacts. Into the biological 
artifacts, fall motion artifacts and biological factors such as blood clots or thrombosis 
of the arterial line in the invasive blood pressure measurement [11, 12]. 

 
2.2.1 Artifacts in ECG and EEG 

 
Most often, the artifacts are well described and studied in electrocardiographic 

(ECG) and EEG signals. In recent Littmann’s publication was presented a review of 
electrocardiographic artifacts [37]. This review describes various artifacts, such as 
motion artifacts, artifacts caused by other devices, loose leads, broken wires, and 
several other artifacts that simulate clinical conditions [37]. Another publication, by 
Islam et al., provided a detailed overview of EEG artifacts [38]. EEG artifacts are similar 
to the ECG artifacts. However, they have some specific additional types, such as eye 
blinks and eye movements (ocular artifacts), ECG pulses (cardiac artifacts), and 
different head muscle artifacts [38]. The EEG signal is also more susceptible to 
electromagnetic interference from neighbouring cables due to the electrodes’ close 
location on the brain map [38].  
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2.2.2 Artifacts in ABP 
 

Various artifacts can occur during invasive blood pressure measurements, such 
as air bubbles or blood clots in the fluid-filled tube, the transmission of mechanical 
vibrations from other devices to the pressure transducer, and constriction of the tube 
between the catheter and transducer. Additionally, the artifact that frequently occurs 
in the IBP signal is the transducer flushing [11]. 
 

2.2.3 Artifacts in ICP 
 

As for intracranial pressure, there are similar types of artifacts compared to the 
ABP signal, such as motion artifacts, connection and human errors, and problems in 
monitoring devices [39]. Moreover, during coughing and sneezing, the physiological 
value of the ICP may temporarily rise to 60 mmHg, which can be recognised as a false 
alarm [28].  
 
2.3 Automatic detection and elimination of artifacts in the ABP 
 

In a study by Khan et al., a comprehensive review of the most prominent 
algorithms for detecting artifacts in ABP signals was presented. Some research has 
focused on identifying artifacts in numerical values, utilizing averaged ABP and MAP 
values, while others have analyzed entire waveforms using machine learning 
techniques and algorithms from image analysis, time series analysis, and signal 
abnormality detection [17]. 

Li et al. simultaneously measured ABP with ECG waveforms and recorded ABP 
artifacts. These researchers analyzed the bedside monitor data obtained from the 
MIMIC II database, involving more than 6000 hours of monitoring. They were able to 
identify six different kinds of ABP artifacts: saturation at maximum and minimum ABP 
levels, pulse pressure reduction, square wave, high frequency, and impulse artifacts. 
Nevertheless, the concrete origins of those artifacts stay unclear. Additionally, they 
constructed an algorithm to explore the "artifact pollution" in the ABP signal, and 
found that diastolic blood pressure is less vulnerable to noise than systolic and mean 
blood pressure [16]. 

A different algorithm has been proposed by Zong et al., which makes the 
assessment of ABP signal quality and examines the ECG-ABP signal relationship in a 
fuzzy logic approach. Based on the data available in MIMIC database data, they found 
that their algorithm significantly reduced false ABP alarms due to artifact [40]. 

Sun et al. had proposed a signal abnormality index (SAI) algorithm for detecting 
nonstandard segments in ABP waveforms, also using MIMIC II data and checked the 
algorithm for effectiveness in comparison to human experts. The SAI algorithm has 
shown robustness and ability to detect typical waveforms of ABP from noise and 
artifacts for further analysis [41]. 

However, these methods relied on ECG signals, which might not always be 
available. In order to overcome this, Zhang et al. proposed a novel methodology for 
the detection of ABP artifacts in an ECG-independent approach. They proposed two 
new features - the end-diastole slope sum (EDSS) and the slow ejection slope sum 



 

 17 

(SESS) - to refine the SAI. The experiment's results provided evidence that with these 
two new characteristics, the specificity of the SAI was largely increased [42]. 

Cao et al. developed an algorithm that rapidly identified nonphysiological 
artifacts. This study used data from 1852 trauma intensive care unit (ICU) patients 
admitted to Vanderbilt University Medical Center. They used signal processing 
statistics to assess the efficiency of this filter and formed logistic regression models 
both before and after the application of filter to the ABP signal for the prediction of 
mortality and morbidity [43]. 

Choi et al. developed an adaptive digital filter system using a capacitive sensor to 
effectively reduce motion artifacts in blood pressure signals. By synchronizing 
capacitance data, which varies with motion, with the corrupted blood pressure signal, 
their system successfully restored the blood pressure signal, achieving up to 95% 
accuracy in artifact reduction. This method offers a cost-effective alternative to 
traditional accelerometers, though it has limitations in handling rapid or non-linear 
movements [44]. 

Son et al. have developed a deep belief network (DBN) model for the 
identification and elimination of artifacts in blood pressure waveforms. Artifacts, 
obtained through the ICM+ software, were classified to have originated from motion, 
blood clots, thrombosis in the arterial line, cuff inflation, and transducer flushing. 
Results showed that their developed DBN model outperformed the popular SAI 
algorithm for artifact detection [12]. 

In another study, Pasma et al. developed three various learning algorithms for 
ABP artifact detection: lasso, restrictive logistic regression, neural network, and 
support vector machines and compared them with the performance produced by 
manual artifact identification carried out by two trained researchers. They were 
introducing an artifact-detecting algorithm that would replace the identified artifacts 
with interpolated values from the blood pressure detected at the arterial line. In a 
comparison to identify the performance of the algorithm, it was then compared with 
manual artifact identification [13]. 

Lee et al. used a deep learning model that combines a stacked convolutional 
autoencoder and a convolutional neural network (CNN) to effectively remove artifacts 
from ICP and ABP signals in patients with TBI. Their approach integrates CNN-based 
automated artifact removal with a data transformation method capable of converting 
continuous signal data into representative images. The model demonstrated high 
accuracy, with prediction rates of 97% for ABP and 94% for ICP artifacts, significantly 
reducing the occurrence of critical clinical events [14]. 

Finally, Rinehart et al. trained machine-learning algorithms to identify three 
specific error states: transducer damping, transducer misplacement high, and 
transducer misplacement low. The results demonstrated that the algorithms achieved 
high accuracy, with area-under-the-curve (AUC) values exceeding 0.9 for all error 
types, particularly excelling in detecting damped waveforms [15]. 

 
2.4 Automatic detection and elimination of artifacts in the ICP 
 

There have not been done many studies regarding detection and removing 
artifacts from the ICP signal. Feng et al. proposed an Empirical Mode Decomposition 
(EMD) method to detect artifacts in the ICP signal. For the elimination of the artifacts 
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an iterative filtering method was used. The research was performed on signals from 59 
neuro ICU patients. In most artifact episodes, this method was effective, apart from 
recognising artifacts with a small amplitude, right after artifacts with high amplitude 
[39]. 

The same research team designed another study to compare three approaches 
of artifact correction: EMD, wavelet transformation and median filtering. EMD method 
had the best performance results, but it is more suitable for offline signal analysis, 
because of the high computational time. For the online analysis, it is more convenient 
to use the median filter approach [45]. 

Several methods have been proposed for the automated identification and 
removal of artifacts from ABP and ICP signals, using techniques such as machine 
learning, time-series analysis, and signal abnormality detection. While machine 
learning offers promising solutions, it demands substantial computational power and 
large, annotated datasets, which makes it less practical for real-time applications 
where quick processing is crucial. 

In contrast, I chose to explore the use of the short-time Fourier transform (STFT) 
for artifact detection due to its simplicity and efficiency. STFT does not require large 
annotated datasets and could be faster, making it more suitable for online data 
analysis in real-time settings. 

 
2.5 Short-time Fourier transform (STFT) 
 

The STFT could be defined as a Fourier transform of a windowed sequence or 
linear filtering operation. We can obtain a frequency spectrum of the stationary signal 
in time using this method. Ideal ABP and ICP signals are stationary, i.e. spectral 
contents are not changing over time. Nevertheless, real signals contain artifacts that 
make them nonstationary. Hence, STFT can allow us to localize some artifacts in time. 
The result of the short-time Fourier transform is a matrix of complex numbers, where 
each complex number represents the magnitude and phase for a particular frequency 
at a particular time period [46]. 
 

2.5.1 STFT for artifact detection 
 

STFT is not usually used for artifact detection. There were just several articles on 
this topic, and most of them were focused on artifact detection in EEG signals. 
Yücelbaş et al. presented a methodology to automatically determine the starting and 
ending time points of sleep spindles in EEG using short-time Fourier transform–
artificial neural networks (STFT–ANN), EMD and discrete wavelet transform (DWT) 
methods. STFT had lower accuracy in comparison with EMD and DWT, because it had 
low resolution at higher frequencies [20]. 

Taherisadr et al. designed a study to improve the identification and localization 
of artifacts in EEG signals. They proposed a method combining three complementary 
techniques: TF analysis (STFT), multi-resolution analysis, and machine learning. The 
proposed approach outperformed the standard EEG signal processing method (1D 
wavelet) when used for artifact detection [21]. 

Another research team focused on detecting artifacts in photoplethysmography 
signal, which is closer to arterial pressure frequency-wise. They used deep learning 
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methods on STFT images as input and analysed quality. The model achieved good 
results with an accuracy and a sensitivity higher than 98% [22]. 

 
2.6 ICM+ 
 

ICM+ is a special clinical research software developed by the team from the 
University of Cambridge (UK) with over 35 years of neuroscience experience. That 
software facilitates collection of high-resolution data from different analogue and 
digital devices. Practical applications of the ICM+ can be very diverse: CSF dynamics 
investigation, monitoring of cerebral autoregulation and other cerebrovascular 
characteristics, and noninvasive brain monitoring based on Transcranial Doppler (TCD) 
and near-infrared spectroscopy (NIRS). ICM+ has useful features for signal analysis, like 
statistical tools and real-time calculations of cerebral autoregulation (PRx, cerebral 
oximetry index (COx)), CPPopt, brain compliance, cerebrovascular compliance, arterial 
wall properties, non-invasive ICP (nICP), and complexity of homeostatic regulation 
(Entropy). Furthermore, that software has artifact elimination tools [47]. 
 

2.6.1 Artifact management 
 

 There are two approaches to artifact elimination in ICM+: manual and 
automatic. Firstly, using the manual method, selected specific parts of the signal where 
the artifacts are located must be selected and then removed. With this removal 
method, the user can choose from two options. The first one (so-called series) 
removes the artifact from only one parameter (signal), for example, arterial blood 
pressure, but all other measured and calculated parameters remain unchanged. The 
current calculated parameters, based on the already deleted section, will remain 
unchanged. If we want to prevent this aspect, we have to select the option of so-called 
global artifact removal and delete the affected part for all signals [47]. 

The second way to eliminate the artifacts is to define an original formula used to 
detect artifacts automatically. Software developers provide all detailed instructions for 
this task. The calculation uses peak-to-peak detection and removes mainly high-
frequency artifacts. However, the recognised artifact is not correctly removed, and a 
noticeable part of the artifact remains in the signal and thus is still included in 
subsequent calculations. Therefore there is a space for improving artifact detection 
and elimination in that software [47, 48]. 

 
2.6.2 HDF5 files 

 
Hierarchical Data Format version 5 (HDF5), which is used in ICM+ software, is a 

versatile and efficient data format widely used for storing large and complex data sets 
in various scientific fields. This format is particularly suitable for the neurocritical care 
environment, where it solves the problem of archiving heterogeneous data generated 
by many devices. The hierarchical, self-describing structure of the HDF5 format 
supports the storage of both small and large datasets and allows for the organized and 
homogeneous storage of multimodal data such as clinical annotations, low-frequency 
numerical data, high-frequency waveform data, and summaries of trend data and 
calculated parameters. Each dataset in the HDF5 file is described using attributes, 
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making the data self-describing and facilitating interoperability. The ability of the file 
format to compress the data significantly reduces storage requirements while 
maintaining fast access times. The compatibility of the HDF5 format with various 
programming languages and scientific tools, including MATLAB and Python, further 
enhances its usefulness in neuroinformatics. This flexibility and efficiency make the 
HDF5 format an ideal choice for creating multi-center databases and standardizing 
data storage, supporting advanced research and individualized patient management in 
critical care environments [49]. 

 
 

2.6.3 Plug-in for ICM+ 
 

In ICM+, it is possible to use a custom plugin developed in Python software. It 
allows adding various user-definable functions that can be applied on input signals 
from vital sign monitors and other devices. The function can contain some complex 
calculations or statistical analysis that ICM+ does not include. It is possible to employ 
the designed functions on both offline data and real-time signals [47]. 
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3 Aim of Dissertation 
 

The primary aim of this dissertation is to address the critical issue of artifact 
detection in arterial blood pressure and intracranial pressure signals, which are crucial 
to the accurate calculation of the Pressure Reactivity Index. The PRx is a correlation 
coefficient between MAP and ICP, with positive values above 0.3 indicating a failure of 
autoregulation. However, the reliability of the PRx index can be compromised by false-
positive values resulting from artifacts in ABP or ICP signals. These artifacts, if not 
properly treated, can lead to misinterpretation of the state of cerebral autoregulation. 

Current solutions, such as the ICM+ software, offer features for artifact detection 
and removal, yet they are not without limitations. Manual artifact removal, while 
effective, is time-consuming. Automatic artifact elimination is beneficial for addressing 
small, high-frequency artifacts, but large artifacts, which have a significant impact on 
MAP and consequently on the PRx index, pose a greater challenge. Therefore, the 
focus of this research is on developing a robust algorithm specifically designed for the 
detection and removal of large ABP artifacts, as these have the most substantial effect 
on the calculation of the PRx index. 

The dissertation will prioritize the detection of ABP artifacts, as the ABP signal is 
more prone to interference compared to ICP. The goal is to identify and eliminate the 
longest and most significant artifacts that could distort the MAP and, by extension, the 
PRx index. This selective detection approach is intended to maximize the quality of the 
remaining signals for accurate PRx calculation, rather than creating a universal 
detection tool that might excessively reduce the amount of usable data. 

The primary focus of this dissertation is on detecting ABP artifacts, with the 
identification of ICP artifacts serving as a secondary objective. Since ICP signals are 
generally less prone to interference and a compromised ABP signal renders PRx 
calculations unusable, the emphasis on ICP artifact detection will be limited and 
supplementary to the main research focus. 

In the subsequent phase of this dissertation, I will develop a specialized 
algorithm for artifact detection. This algorithm aims to effectively identify and 
eliminate significant ABP artifacts, thereby enhancing the reliability of PRx calculations 
and improving the assessment of cerebral autoregulation. 

Following the development of the detection algorithm, I plan to create a Python 
plug-in for the ICM+ software. The output of this plug-in will be a "PRx reliability 
index," which will inform clinicians of the percentage of artifacts present within a given 
time interval. 
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4 Pseudonymisation of the HDF5 files from the ICM+ 
software 

 
4.1 Methods 
 

When working with data from real patients, it is crucial to perform 
pseudonymization and remove all personal identifiers to prevent unauthorized re-
identification. Before packaging vital signs records into an HDF5 file using the ICM+ 
software, there is an option to anonymize the data (strip patient identifiers), which we 
always use. However, during my analysis of the final HDF5 file, I discovered that 
sensitive data still remains, making it possible to re-identify patients. Examples include 
actual timestamps, diagnosis notes, and other details. Although the HDF5 file is 
generated automatically at the end of the recording, it often isn't fully anonymized, 
and patient identifiers may still be present. 

The pseudonymization process involves several steps. The first steps were 
handled by our intensivist colleague from Masaryk Hospital in Usti nad Labem. These 
included renaming all files with special identifiers (e.g., TBI_001) and transferring 
sensitive patient information files, which are automatically generated at the end of the 
recording, to a secure folder. Only our intensivist colleague has access to files 
containing personal patient information. 

Afterward, I delete the automatically generated HDF5 file because it was created 
before pseudonymization and may still contain personal patient data. Once these 
initial steps are completed by my colleague, I can repackage a new HDF5 file from the 
main .ICMP file. This step is also crucial for another reason: sometimes the 
automatically generated HDF5 file lacks timeline information, and repackaging the 
recording helps resolve this issue.  

The new HDF5 file is then exported to the Jupyter notebook for timeline 
pseudonymisation and deleting diagnosis notes. Using Python, I erase sensitive patient 
information from the annotations folder of the HDF5 file, see Figure 4.1 (on the right). 
Then I generate a random number from 25 to 100 using seed and randint functions. 
This number is then used as a number of years for a time shift, so it is not possible to 
find out the actual date.  

Figure 4.1: On the left is an HDF5 file concept. On the right is a structure of an HDF5 file 
generated in ICM+ software [49]. 
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To keep the current day of the week after the time shift, I calculate the old and 
new day of the week using the function datetime.fromtimestamp().strftime('%w'). A 
difference between the old and new day of the week is converted to milliseconds and 
then added to random numbers of years calculated in the previous step.  

The last step is adding the random number of years (with a preserved day of the 
week) to the timeline of trend data, waveform data, and quality data. Information 
about the timeline is saved in the “ index” and “quality” tables of the “waves” and 
“numerics” data type groups. For pseudonymisation of the timeline, I am rewriting 
“starttime” column by adding the random number of years (converted to milliseconds) 
to the original value.  

 
4.2 Results 
 

I created the script that performs pseudonymization for secure future analysis in 
Python (or other programs like MATLAB). The script takes the original HDF5 file as 
input and generates a pseudonymized HDF5 file as output. The resulting file has a 
shifted timeline and no longer contains sensitive patient information. 
 
4.3 Discussion 
 

To protect HDF5 files from unauthorized re-identification, I wrote a 
pseudonymization script in Python. This script is useful not only for secure signal 
analysis in Python and other software (e.g., MATLAB) but also for displaying signals in 
ICM+ software with a pseudonymized timeline and without any sensitive personal 
information. Although the authors of the ICM+ software published an article about the 
contents of HDF5 files exported from their program [49], some of the information was 
inaccurate. For instance, the timeline format in the quality table from the article was 
incorrect, which complicated the script development process. Most of the HDF5 file 
details had to be explored and examined manually to ensure there were no mistakes. 
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5 Effect of downsampling on a signal frequency spectrum 
 
5.1 Methods 
 

While working with ICM+ software and the HDF5 files it generates, I noticed that 
the software automatically downsamples signals like ABP and ICP when packaging 
patient data into a single HDF5 file. For example, the ICP signal is downsampled from 
200 Hz to 100 Hz. Therefore I decided to examine the effect of downsampling on a 
signal frequency spectrum.  

I first exported a 5-second segment of the ICP signal into a .CSV file. After 
downsampling it to 100 Hz, I attempted to apply a fast Fourier transform (FFT). 
However, the FFT could not be performed due to missing data. To fix this, I used 
interpolation to fill in the data gaps and repeated the downsampling. Before running 
the FFT, I normalized both the original and downsampled signals. Finally, I compared 
both FFT spectra by plotting them on a single graph to visualize any differences. 

 
5.2 Results 
 

Below are displayed original ICP signal (see Figure 5.1), and the same signal 
downsampled to 100 Hz (see Figure 5.2).  

Figure 3.1: Original ICP signal (after imputation) - sampling frequency 200 Hz. 
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Figure 5.2: Downsampled ICP signal (after imputation) - sampling frequency 100 Hz. 

Figures 5.3 and 5.4 display a comparison of the original ICP signal FFT with 
downsampled signal FFT with different x-axis ranges.  

 
Figure 5.3: Comparison of original signal FFT with downsampled signal (100 Hz) FFT - x-axis 

range from 0 to 100. 
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Figure 5.4: Detailed comparison of original signal FFT with downsampled signal (100 Hz) FFT - 
x-axis range from 0 to 5 Hz. 

5.3 Discussion 
 

Since signals exported to HDF5 format in ICM+ software are automatically 
downsampled, I examined the effect of downsampling on the frequency spectrum. As 
shown in Chapter 5.2, the appearance of the original signal is very similar to the signal 
downsampled to 100 Hz, making it difficult to notice any differences. In the first part of 
the frequency spectrum (from 0 Hz to 5 Hz), both signals are identical. However, 
beyond 50 Hz, the downsampled signal has no frequency spectrum due to the Nyquist 
theorem, which states that the sampling frequency must be at least twice the 
maximum frequency of the original signal. As a result, the downsampled signal's 
frequency spectrum cannot contain frequencies higher than half of the sampling rate. 
In our case, 100 Hz is still a sufficient sampling frequency for arterial and intracranial 
pressure signals. However, if we use these same HDF5 files in the future for signals 
that require a higher sampling rate (e.g., ECG), we must ensure that the actual 
sampling rate is appropriate for those signals.  
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6 Circadian variability of PRx index 
 
6.1 Methods 
 

It is often observed on bedside monitors that increased PRx variability occurs 
during the morning and mid-morning hours, likely due to artifacts from nursing care. 
Although this phenomenon has not been described in published studies, it may 
significantly limit the usefulness of PRx as a real-time parameter for clinical decision-
making, including CPPopt calculations. To investigate how artifacts in ABP and ICP 
signals impact the circadian variability of the PRx index, we initiated a project in 
collaboration with colleagues from the Neurointensive Care Unit at the Department of 
Anesthesiology in Masaryk Hospital, Usti nad Labem. 

The first step was to select suitable software for signal analysis. While ICM+ 
software could be used for this purpose, it is not very robust. Therefore, I chose to use 
the Python programming language and Jupyter notebooks, which provide greater 
flexibility and capability for our analysis. I also had to decide on the best format for 
exporting the raw ABP and ICP signals. ICM+ software offers several options, including 
comma-separated text files (.CSV), tab-delimited relative time text files (.ASC), and 
hierarchical data format version 5 files (.HDF5). The HDF5 format was the best choice 
because it allows for the storage of large volumes of numerical data and can be easily 
accessed using Python [49]. 

A retrospective signal analysis was conducted on HDF5 data records from 19 
patients with traumatic brain injury. The methodology flowchart is shown in Figure 6.1. 
The HDF5 files were imported into Python using the h5py.File(HDF5 file, ‘r+’) function 
from the H5PY library. If the file was correctly exported from the ICM+ software, the 
"waves" group would contain the following datasets: 'art.index', 'art', 'icp.index', and 
'icp'. These datasets store high-resolution ABP and ICP values, as well as information 
about each signal's timeline. Using this timeline information (see Figure 6.2) and the 
np.linspace(starttime, stoptime, length) function, I reconstructed the timelines of the 
ABP and ICP signals. 
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Figure 6.1: Methodology flowchart. 

 

 
Figure 6.2: Description of columns in the “index” tables. 

 
If an HDF5 file contained manually labeled artifacts, these were recorded in the 

"quality" tables, which include the timestamps for the start and end of each artifact. 
Using this information, I labeled all artifacts as NaN values in the ‘art’ and ‘icp’ 
datasets. 

Next, I converted the timelines of the ABP and ICP signals from UNIX format in 
milliseconds to the standard “yyyy-mm-dd HH:MM.ms” format to simplify further 
calculations. Since the array containing pressure values and the timeline consists of 
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billions of rows, performing any analysis would be computationally demanding. To 
address this, I used the high-performance Python library Vaex, which optimizes 
calculations and speeds up the analysis process. 

After preprocessing the data, I averaged both signals using a 10-second moving 
window. Before calculating the average, we ensured that the number of valid (non-
NaN) values was higher than 50% (the missing data limit). After averaging, we 
calculated the percentage of eliminated data. Using a similar approach, we calculated 
Pearson correlation coefficients (PRx indexes), with the only difference being a 300-
second calculation window and a 60-second shift. The missing data limit was also set 
to 50%. 

All PRx values were then grouped into hourly bins (from 0 to 23), with the 
condition that if the number of valid values was less than 30, all values for that hour 
would be labeled as NaN. The sorted PRx indexes were saved to a .CSV file, and the 
median absolute deviation (MAD) was calculated for each hourly bin. 

After analyzing all 19 patient records, I calculated the median of all MADs for 
each hourly interval. To better illustrate the variability, I visualized all MAD values 
using a boxplot. 

 
6.2 Results 
 

PRx indices from 19 patients were sorted into hourly bins and analyzed to assess 
circadian variability. For each patient, PRx indices and median absolute deviations 
(MAD) were calculated for each hourly bin. All MAD values were then combined, and a 
median was calculated for each hour. The graphs below display the calculated medians 
of the MADs (see Figure 6.3) and a boxplot illustrating the variability of the MADs (see 
Figure 6.4).  

 

 
Figure 6.3: Hourly changes of MADs medians. 
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Figure 6.4: Boxplot of MADs showing hourly changes. 

6.3 Discussion 
 

We initiated a project to assess how artifacts in ABP and ICP signals impact the 
circadian variability of the PRx index. In this study, we analyzed data from 19 out of 27 
patients, excluding eight due to a high percentage of missing values. Additionally, 
some PRx indices were replaced with NaN values if more than 50% of data were 
missing within a particular hour. The results of the signal analysis can be found in 
Chapter 6.2. Figure 6.3 shows increased PRx variability during certain morning and 
evening hours. However, these results are based on patients without labeled artifacts. 
To obtain a more accurate analysis, it is essential to label all artifacts and evaluate how 
much of the variability peaks are influenced by artifacts. 
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7 Simulated artifacts 
 
7.1 Methods 
 

For the development of detection algorithms, "simulated" artifacts are 
sometimes used for the sake of better algorithm specification and tuning [22]. For our 
first study [23], where we investigated the effect of the presence of different artifacts 
on the calculation of the PRx index, we simulated the most common artifacts.  

We conducted an analysis of 935 hours of multimodal monitoring data from 
patients with acute brain injury to identify and characterize common artifacts in ABP 
and ICP signals. The data contained only vital signs without patient descriptions, and 
were provided by our colleagues at the Neurointensive Care Unit at the Department of 
Anesthesiology, Perioperative and Intensive Medicine, Masaryk Hospital in Usti nad 
Labem, Czech Republic.  

The identified artifacts were categorized into five types: rectangular, fast 
impulse, sawtooth, isoline drift, and constant ICP value. These artifacts were described 
based on their shape, duration, and amplitude changes observed in the original data. 

To simulate these artifacts, we first identified 20 undisturbed 10-minute 
segments of ABP and ICP waveforms that were free from artifacts. These segments 
were carefully selected to ensure that they had stable ICP (7–15 mmHg), a MAP of 90 ± 
5 mmHg, and a PRx value below 0.3, indicating preserved cerebrovascular 
autoregulation. 

Using MATLAB (version R2019a, MathWorks, Natick, Massachusetts, USA), we 
developed mathematical models of the identified artifacts by replicating the observed 
characteristics, such as duration and amplitude, based on real data. These models 
allowed us to accurately simulate the artifacts within the waveform segments, as 
detailed in Table 7.1, which outlines the specific mathematical functions used for each 
type of artifact.  
 
Table 7.1: Mathematical functions for simulation of artifacts 

Type of artifact Mathematical function for artifact simulation 
Rectangular 𝐴(𝑡)!"# = 𝐴(𝑡) ∙ 0.1 +	 𝐴̅ 	 ∙ -1 +

𝑅$%&
100 / 

Fast impulse 𝐴(𝑡)!"# = 𝐴(𝑡) +	 𝐴̅ 	 ∙ -1 +
𝑅$%&
100 / 

Saw tooth 𝐴(𝑡)!"# = 𝑠𝑖𝑛(𝑡) ∙ 𝐴̅ 	 ∙ 31 + '!"#

())
4 + 𝐴̅, where 𝑡 = 0: *

+∙-$
: *
+
 

Isoline drift 𝐴(𝑡)!"# = 𝐴(𝑡) + 𝑠𝑖𝑛(𝑡) ∙ 𝐴̅ 	 ∙ '!"#

())
, where 𝑡 = 0: *

-$
: 𝜋 

Constant ICP value 𝐴(𝑡)!"# = 8 
 

Here is the breakdown of the symbols used in the equations: 
 
• 𝐴(𝑡) represents the original signal amplitude at time 
• 𝐴(𝑡)!"# 	represents the new signal amplitude at time 𝑡	after the artifact has 

been added. 
• 𝐴̅	represents the average amplitude of the original signal over a specified 

time window. 
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• 𝑅$%& specifies the percentage increase or decrease in amplitude due to the 
artifact. 

• 𝑡	 is time variable that ranges from the start to the end of the artifact's 
influence on the signal. 

• 𝐹. represents sampling frequency of the signal. 
 

These simulated artifacts were inserted into the previously selected undisturbed 
segments at a specific time point (4 minutes and 1 second) within the 10-minute 
segment. We inserted each artifact either into one or both pressure signals (ABP and 
ICP) to assess their impact on the PRx calculation. 
 
7.2 Results 
 

We identified two primary groups of artifacts in the dataset: stereotyped and 
complex. Stereotyped artifacts (see Figure 7.1) were defined by their shape, duration, 
and amplitude rise (see Table 7.2), allowing them to be categorized into types such as 
rectangular artifacts, fast impulses, sawtooth artifacts, isoline drifts, and constant ICP 
values. In contrast, complex artifacts lacked these clear and consistent characteristics, 
making them difficult to categorize or model using standard analytical methods. On 
average, each patient had 166 artifacts in a 24-hour signal segment, with variations in 
both length and amplitude [10]. 
 
Table 7.2: Parameters of simulated artifacts (duration and amplitude rise) [10]. 

Type of artifact 
Parameters of modelled artifacts 

Duration (s) Amplitude rise (%) 

Rectangular 4; 15; 30; 60 25; 50 ;75; 100 

Fast impulse 0.04 25; 50; 75; 100; 125 

Saw tooth 30; 45; 90 30; 60 

Isoline drift 15; 30; 60; 120 15; 30 

Constant value 4 
Constant value of 

ICP 8 mmHg 
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Figure 7.1: Example of observed stereotyped artifacts: a) rectangular, b) fast impulse, c) saw 

tooth, d) isoline drift, e) constant value [10]. 

In addition to identifying and categorizing the artifacts present in the original 
data, we created simulated versions of these artifacts. Each type of artifact—
rectangular, fast impulse, sawtooth, isoline drift, and constant ICP value—was 
mathematically modeled based on the observed characteristics such as shape, 
duration, and amplitude rise. These simulated artifacts (see Figure 7.2) were then 
systematically inserted into the undisturbed signal segments. 
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Figure 7.2: Example of simulated artifacts: a) rectangular, b) fast impulse, c) saw tooth, d) 

isoline drift, e) constant value [10]. 

Four types of artifacts—rectangular, fast impulse, sawtooth, and isoline drift—
were inserted into both ABP and ICP signals. Even the smallest rectangular artifact 
(lasting 4 seconds and causing a 25% amplitude increase) led to a rise in PRx above 0.3 
in 55.4% of cases. Longer artifacts (15 seconds or more) caused the PRx to exceed 0.3 
in all samples, with values often approaching 1.0 (for a 15-second artifact: PRx 0.88 
[0.81–0.93]), see Figure 7.3. The sawtooth artifact had an even stronger effect, with a 
30% amplitude increase causing PRx to reach 1.0, regardless of duration. In contrast, 
the isoline drift affected PRx only when the drift lasted at least 1 minute and the 
isoline rose by nearly a third, causing a PRx increase above 0.3 in 21.6% of cases. The 
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fast impulse artifact did not cause a significant change in PRx. When artifacts were 
introduced only into the ABP, the impact on PRx was much smaller, with critical values 
reached in just 4.3% of rectangular and sawtooth artifacts. Lastly, the simulation of a 
constant ICP value for 4 seconds did not result in a significant change in PRx [10]. 
 

 
 

Figure 7.3: The effect of the rectangular artifact on PRx value: a) rectangular artifact lasting 4 s 
with an amplitude rise of 25% in the ABP and in both signals, b) rectangular artifact lasting 15 s 

with an amplitude rise of 25% in the ABP and in both signals [10]. 

7.3 Discussion 
 
We simulated the most common stereotyped artifacts by mathematically 

modeling their characteristics based on the observed data. While we did not simulate 
every possible type of artifact—given the large variety—we focused on those that are 
most prevalent. Our observations showed that many artifacts in real signals were 
complex, but their individual components often aligned with stereotypical artifacts. As 
a result, we concentrated on simulating only a few basic types and examined their 
impact on the PRx index to identify which artifacts have the greatest influence and 
what should be prioritized during artifact detection. The rectangular and sawtooth 
artifacts caused the most significant changes in PRx, while other artifact types—fast 
impulse, isoline drift, and constant ICP—did not significantly affect PRx values. 
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8 Effect of high-frequency artifacts on pressure reactivity 
index 

 
8.1 Methods 
 

As previously outlined, one of the primary objectives of this dissertation was to 
detect artifacts in the ABP signal to ensure its correct use in the calculation of the PRx 
index. At the outset of this project, our goal was to identify the factors that could 
influence the PRx index value and determine which artifacts needed to be detected. 

In one study, we simulated various types of artifacts and introduced them into 
either the physiological ABP signal, the ICP signal, or both simultaneously [10]. We 
then calculated the PRx index before and after the insertion of these artifacts. The key 
finding from this study was that the impact of artifacts on PRx varied depending on 
their shape, duration, and whether they were present in one or both signals. Initially, 
we used a fast pulse as a stand-in for high-frequency artifacts and found that it had no 
significant effect on the PRx index calculation. However, through further discussions 
with the team and analysis of real ABP signals, I identified another common form of 
high-frequency artifact: high-frequency noise. This noise significantly distorts the 
arterial pressure signal and appears to have the potential to affect the PRx index 
calculation, which required further verification. Therefore, we decided to test this 
hypothesis [50]. 

We extracted data from an anonymized database of physiological signals 
recorded in the Neurointensive Care Unit at Masaryk Hospital in Usti nad Labem, Czech 
Republic. ABP and ICP were monitored using specific equipment, and the data were 
captured using ICM+ software (version 8.6, Cambridge Enterprise Ltd., Cambridge, UK). 
We selected twenty 10-minute signal segments that were free from any artifacts, 
based on specific physiological criteria [50]. 

Further data processing was performed using Python (version 3.8.8, Python 
Software Foundation, Wilmington, Delaware, USA), which included generating the 
noise, processing the signals, and calculating the PRx values. The comparison focused 
on assessing the effects of high-frequency noise on the PRx values [50]. 

We simulated high-frequency noise in the ABP waveform using a band-pass finite 
impulse response (FIR) filter with a Kaiser window. To determine the appropriate 
frequency range for the noise, we applied a STFT to a real ABP signal with noise. The 
noisy signal was passed through a 5-second STFT window, and we plotted 20 
frequency spectrum curves (see Figure 8.1). By analyzing these curves, we identified 
the frequencies most affected by noise and selected the 5–25 Hz range for the noise 
simulation. This range was chosen because it accurately represented the high-
frequency noise typically found in ABP signals, allowing us to model the noise 
effectively for subsequent analysis [50]. 

PRx indices were then calculated from both the original and noisy ABP signals 
using a 300-second window and a 60-second shift. To compare the impact of noise on 
PRx variability, we calculated the median absolute deviation for both signal types [50]. 
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Figure 8.1: 20 spectral curves of the ABP signal with real noise plotted on top of each other 

[50]. 

 
8.2 Results 
 

In this study, we examined the impact of high-frequency noise in ABP signal on 
PRx calculations. We compared the original ABP signal, the ABP signal with simulated 
high-frequency noise, and the ABP signal with real noise (see Figure 8.2). The analysis 
showed that the average MAD for the original PRx values was 0.1129, while for the PRx 
values calculated from the noisy ABP signal, it was 0.1123 (see Figure 8.3). This small 
difference indicates that high-frequency noise in the ABP waveform had a negligible 
impact on the PRx calculation [50]. 
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Figure 8.2: A comparison of real and simulated artifacts. A – undisturbed ABP signal without 

artifacts; B – undisturbed ABP signal with simulated high- frequency noise; C – ABP signal with 
real high-frequency noise [50]. 
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Figure 8.3: A comparison of the calculated MAD values between the original PRx and the noisy 

PRx [50]. 

8.3 Discussion 
 

Our findings indicate that high-frequency artifacts in the ABP waveform, within 
the 5–25 Hz range, do not significantly impact the calculation of the PRx. Although 
these artifacts meet the standard definition of noise, their effect on PRx is minimal, 
supporting the notion that not all artifacts need to be removed for accurate PRx 
calculation. This approach could simplify artifact detection algorithms, making them 
less computationally demanding without compromising the accuracy of clinical 
decision-making. However, it is important to consider that this study used simulated 
noise, and further analysis with real noise is necessary to fully validate these 
conclusions [50]. 
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9 Choosing a calculation window of Short-time Fourier 
transform for artifact detection 

 
9.1 Methods 
 

In Section 2.3 (Automatic Detection and Elimination of Artifacts in the ABP), we 
reviewed various artifact detection methods developed by other research teams. 
However, none have applied the STFT for this purpose. We aimed to test the use of 
STFT to detect different types of artifacts. 

I simulated five typical types of artifacts (see Table 9.1) in Matlab software 
(MATLAB R2020a) and inserted them into the original undisturbed arterial blood 
pressure signal (or into the ICP signal, in case of the constant ICP value artifact). The 
appearance and duration of the simulated artifacts are based on the observed artifacts 
in real signals. I exported 50-second or 100-second part of the signal with an artifact 
(depending on the artifact duration) to the .CSV format for further signal analysis in 
Python.  

 In Jupyter notebooks using signal.stft function (SciPy library), I have performed 
STFT on the exported signals disturbed by the different artifacts. I have specified a 
time series of measurement values (signal section with the artifact), window length, 
and sampling frequency to use this function, see Table 9.1. Different window lengths 
were always chosen considering artifact duration. According to the literature [46], the 
window length must be selected to assume that the signal is stationary during this 
period. I left the window type as the default - Hanning window. I have also left the 
length of overlap window at the default setting, which is set to half of the calculation 
window.  

 
Table 9.1: Duration of simulated artifacts and corresponding set parameters for STFT 
calculation. 

Artifact type Modelled artifact 
duration [s] 

STFT calculation 
window length [s] 

Sampling frequency 
[Hz] 

Rectangular 4 1; 3; 5; 7; 10 

300 

Saw tooth 20 5; 7; 10; 20; 25 

Isoline drift 30 5; 7; 10; 20; 30; 35 

Constant ICP value 4 1; 4; 5; 7; 10 

Fast impulse 0.04 0.5; 1; 3; 5; 7  

 
In the end, I performed STFT on the three signal sections with obvious complex 

artifacts. Complex artifacts can not be described in terms of their shape, duration, and 
amplitude rise. I have chosen 5 seconds as the STFT calculation window length because 
it had good results on different artifacts.  
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9.2 Results 
 

Figures 9.1-9.10 display different types of artifacts that were analysed using an 
STFT 5-second window. In Annex A are displayed the same artifacts, but analysed using 
different STFT window lengths. 

 

Figure 9.1: Rectangular artifact in ABP signal - duration 4 s. 

 
Figure 9.2: Calculated STFT with a 5-second moving window on a signal with a rectangular 

artifact. 
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Figure 9.3: Saw tooth artifact in ABP signal - duration 20 s. 

 
Figure 9.4: Calculated STFT with a 5-second moving window on a signal with a saw tooth 

artifact. 
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Figure 9.5: Isoline drift artifact in ABP signal - duration 30 s. 

 
Figure 9.6: Calculated STFT with a 5-second moving window on a signal with an isoline drift 

artifact. 
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Figure 9.7: Constant value artifact in ICP signal - duration 4 s. 

 
Figure 9.8: Calculated STFT with a 5-second moving window on a signal with a constant ICP 

value artifact. 
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Figure 9.9: Fast impulse in ABP signal - duration 0.04 s. 

 
Figure 9.10: Calculated STFT with a 5-second moving window on a signal with a fast impulse 

artifact. 

Figures 9.11-9.16 show an STFT that was performed on different complex 
artifacts from the real ABP signal. 
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Figure 9.11: Real artifact in a raw ABP signal 1. 

 
Figure 9.12: Calculated STFT with a 5-second moving window on a signal with a real artifact 1. 
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Figure 9.13: Real artifact in a raw ABP signal 2. 

 
 
Figure 9.14: Calculated STFT with a 5-second moving window on a signal with a real artifact 2. 
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Figure 9.15: Real artifact in a raw ABP signal 3. 

 
Figure 9.16: Calculated STFT with a 5-second moving window on a signal with a real artifact 3. 
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9.3 Discussion 
 

I performed the short-time Fourier transform on various artifacts, with the 
results described in section 9.2. As expected, a 5-7 second STFT window is generally 
sufficient to detect changes in the signal, particularly for rectangular artifacts, 
sawtooth artifacts, and even fast impulses. However, for drift isoline artifacts, 
detection is ineffective, as they are not easily visible on the frequency spectrum. When 
I applied STFT to constant ICP values, noticeable changes in the spectrum were only 
observed with window lengths up to 5 seconds. I also applied STFT with a 5-second 
window to artifacts from real signals, showing that it effectively captures both complex 
artifacts with a large area under the curve and short interferences.  
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10 Algorithm for detection of simulated artifacts 
 
10.1 Methods 
 
10.1.1 First attempts at creating a detection algorithm 
 

After selecting the appropriate window length for the STFT calculation to detect 
basic artifacts, I began developing the detection algorithm. The primary challenge was 
determining the right parameters to decide whether an artifact was present in a given 
location. 

The STFT provided outputs including the frequency range, timeline, and a matrix 
containing the amplitude (and phase) values for each frequency component within 
each time segment. Both frequency and time resolution of the STFT spectrum were 
crucial, with frequency resolution set at 0.2 Hz and time resolution at 2.5 seconds. 
Initially, I limited the frequency range for analysis to between 0.4 Hz and 20 Hz, 
excluding higher frequencies that were irrelevant for my purposes and the 0.2 Hz 
range due to the dominance of the DC component. Figures 10.1 and 10.2 below show 
examples of the frequency spectrum for a normal ABP signal and one with an artifact. 

 

 
Figure 10.1: Frequency spectrum of a normal signal 
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Figure 10.2: Frequency spectrum of signal with rectangular artifact 

Next, I attempted to convert the matrix of complex amplitude (and phase) values 
of each frequency component into a 1D signal. I started by converting the complex 
numbers into absolute values, and then processed these values across different 
frequencies for each time point. I calculated the median frequency, mean, median, 
standard deviation, and sum for each segment (see Figure 10.3). As shown in the 
figure, only some of these parameters indicated changes in the spectrum. A significant 
finding was that simple parameters like the sum and mean were effective in capturing 
the start and end of the artifact. Additionally, changes in standard deviation (STD) 
were helpful in identifying the duration of the artifact. Therefore, I experimented with 
combining these parameters and introducing thresholds to help the algorithm identify 
artifacts.  
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Figure 10.3: Demonstration of tested parameters on the signal with rectangular artifact: sum, 

mean, standard deviation (STD), median, median frequency (MDF) 

However, the standard deviation did not behave consistently across all artifacts; 
sometimes an artifact increased the STD, while other times it decreased. As a result, I 
chose not to use the STD in the first version of the algorithm and instead relied on the 
sum of the amplitude spectrum at each time point. 

I then considered monitoring changes in two frequency ranges: 0.2 to 2 Hz and 
10 to 20 Hz. My hypothesis was that changes in the power spectrum at these 
frequencies might help detect different types of artifacts. I calculated the sum of the 
power spectrum in various frequency ranges for different types of simulated artifacts 
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(see Table 10.1). The table shows that changes due to baseline drift were not visible in 
the 10 to 20 Hz range, so I focused further calculations on the 0.2 to 2 Hz range. 

 
Table 10.1: Changes caused by different types of artifacts in different spectral ranges 

 
Artifact type Power from 0.2 to 2 Hz Power from 10 to 20 Hz 
Rectangular Increase in total power Decrease in total power 
Saw tooth Sinusoidal increase in total 

power 
Decrease in total power 

Baseline drift Increase in total power -------- 
Fast impulse Increase in total power Decrease in total power 

 
When experimenting with different thresholds for artifact detection, I 

encountered a problem: using absolute values for the power spectrum sum was not 
feasible, as normal values varied across different recordings and patients. To address 
this, I standardized the data to establish universal thresholds for artifact detection. The 
standardized value (z) was calculated using the baseline value (x), mean (μ), and 
standard deviation (σ): 

 
 𝑧 = 	

𝑥 − 	𝜇
𝜎  (1) 

 
Initially, I set the threshold for the standardized total power spectrum value at 1. 
However, testing revealed that this limit did not work universally across all artifact 
types, so I adjusted it to 0.5*maximum. Further testing showed that the algorithm 
performed well with short artifacts but struggled with longer ones. To improve 
detection, I narrowed the frequency range under investigation to 0.2 to 1 Hz. The 
algorithm's performance improved, detecting almost all relevant artifacts, though 
some large artifacts still posed challenges. Therefore, we decided to add additional 
conditions. 

We hypothesized that the dominant frequency in the spectrum would 
correspond to the heart rate, with its multiples representing harmonic components. 
We added a condition to monitor the dominant frequency (heart rate) and marked it 
as an artifact if it fell outside the 0.5 Hz to 3.33 Hz range, corresponding to a heart rate 
between 30 bpm and 200 bpm. I also examined the harmonic components of the 
dominant frequency to identify which varied most due to artifacts. Testing revealed 
that the second harmonic component yielded the best results. 
 
10.1.2 Final algorithm used for detection of simulated artifacts 

 
I applied all the knowledge acquired during the algorithm's development to 

create its final version, which was used to detect simulated artifacts. The whole data 
processing is shown in Figure 10.4.  

Finally, we conducted a retrospective analysis of high-frequency multimodal 
monitoring data from a critical care database, focusing on arterial blood pressure (ABP) 
waveforms. Data were collected from patients in the neurointensive care unit at 
Masaryk Hospital in Ústí nad Labem, Czech Republic, using Carescape B850 monitors 
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and sampled at a frequency of 200 Hz. From this anonymized database, we selected 20 
segments of unperturbed ABP curves, each lasting 10 minutes, totaling 200 minutes of 
data. These segments were then divided into four 2.5-minute segments, resulting in a 
final set of 80 artifact-free segments, all maintaining a mean arterial pressure (MAP) of 
90±5 mmHg. 

 

 
Figure 10.4: Flowchart showing data processing and artifact detection in three rules. 

We introduced four types of simulated artifacts—rectangular, fast impulse, 
sawtooth, and baseline drift—into the ABP waveforms at varying durations and 
amplitudes. These artifacts were modeled based on characteristics observed in real 
patient data and were inserted into each of the 80 segments. To detect changes in the 
frequency domain caused by these artifacts, we applied a STFT using a 5-second 
window with 50% overlap. This approach allowed us to capture minor changes in the 
signal, which are critical for identifying artifacts. 
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To identify artifact-containing segments, we employed an algorithm with three 
decision-making rules. The first rule analyzed the dominant frequency component 
within the power spectrum, focusing on the 0.2–20 Hz range. Segments were flagged 
as containing artifacts if the dominant frequency fell outside the 0.5–3.33 Hz range, 
which corresponds to the fundamental harmonic of the heart rate in the ABP signal. 
The second rule evaluated the standardized power spectrum within the 0.2–1 Hz range 
to detect low-frequency artifacts in segments where the pulsating signal was 
preserved. If the standardized power spectrum exceeded 50% of the maximum value 
within a ten-minute window, the segment was classified as containing an artifact. The 
third rule examined the value of the second harmonic of the dominant frequency 
component. If this value was less than three times the minimum value of the power 
spectra calculated within the same window, the segment was identified as containing 
an artifact. 

Segments that passed all three rules were determined to be artifact-free, while 
those that triggered any of the rules were classified as containing artifacts. We then 
evaluated the performance of this detection algorithm by calculating sensitivity and 
specificity based on the accurate identification of inserted artifacts. 
 
10.2 Results 
 

We inserted four types of artifacts—rectangular, fast impulse, saw tooth, and 
baseline drift—into ABP signals and evaluated the performance of an algorithm based 
on the STFT to detect these artifacts, see Table 10.2. The algorithm demonstrated high 
sensitivity in detecting rectangular (93.35%) and sawtooth (94.83%) artifacts, with 
specificity exceeding 99% for both. However, it showed low sensitivity for detecting 
baseline drift (5.02%), and it did not detect fast impulse artifacts. The false positive 
rate was 0.00% for all artifact types, durations and amplitudes. 

 
Table 10.2: Results of detection for each type of simulated artifact 

 
Artifact type Sensitivity (%) Specificity (%) 
Rectangular 93.35 99.34 
Saw tooth 94.83 99.14 

Baseline drift 5.02 98.78 
Fast impulse 0 99.82 

 
10.3 Discussion 
 

The algorithm's success in identifying rectangular and sawtooth artifacts 
demonstrated its effectiveness in detecting significant disturbances in the ABP signal. 
The use of STFT enabled the observation of changes in the frequency spectrum over 
time, making it a valuable tool for fast and reliable artifact detection. The simplicity of 
the STFT-based approach, compared to more complex machine learning methods, is 
particularly beneficial for real-time data analysis.  

Although the algorithm struggled with fast impulse and baseline drift artifacts, 
this is not considered problematic. In our previous work [10], we found that the impact 
of artifacts on the PRx varies depending on their type, duration, and amplitude. The 
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fast impulse artifact had minimal impact because the PRx calculation involves a 10-
second averaging process that acts as a low-pass filter, suppressing short artifacts. 
Similarly, baseline drift showed minimal effect, and its origin may not always be 
artificial. Therefore, we focused on detecting rectangular and sawtooth artifacts, 
achieving over 90% sensitivity and specificity. While the sensitivity for baseline drift 
was low, the specificity remained above 90%, ensuring accurate identification of 
artifact-containing signals. 

We also observed that while the algorithm effectively detected artifacts with 
sharper edges, it was less sensitive to the middle parts of rectangular artifacts. This 
suggests a potential area for further improvement. Despite these limitations, the 
algorithm's high specificity ensures that artifact-free segments are reliably identified, 
which is crucial for maintaining the accuracy of secondary calculations like the pressure 
reactivity index. Further testing with real clinical data will be essential to refine and 
validate the algorithm's performance in practical applications. 
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11 Updated algorithm for detection of real artifacts 
 
11.1 Methods 
 
11.1.1 Detection of artifacts in ABP 
 

After fine-tuning the artifact detection algorithm on simulated data, I proceeded 
to test it on data from real patient containing actual artifacts. I had access to a 9-day 
patient record with annotated artifacts, provided by colleagues at the Neurointensive 
Care Unit at Masaryk Hospital in Usti nad Labem, Czech Republic. 

The first step involved modifying the algorithm and its functions to 
accommodate the different data formats. The simulated artifacts were stored in .CSV 
format, while the real data were in .HDF5 format. After adjusting the computational 
functions, I encountered several challenges, starting with the sheer volume of data 
being processed. Initially, when I ran the algorithm on the raw data, it did not 
complete within 30 minutes. Given that raw arterial pressure signals often contain tens 
of millions of values, efficient processing was crucial. To address this, I utilized the 
Vaex Python library, which optimizes the handling of large datasets. Additionally, I 
divided the original recording into 10-minute segments and processed them 
sequentially. These steps significantly accelerated the data processing. 

Another major challenge was the discontinuity in the frequency spectrum at the 
start and end of each 10-minute analysis window. These discontinuities were 
consistently flagged as artifacts by the detection algorithm, which needed to be 
resolved. I addressed this by introducing a 1-minute overlap between consecutive 
analysis windows. This overlap allowed me to replace the points in the frequency 
spectrum that were affected by discontinuities with those from the subsequent 
window, resulting in a continuous frequency spectrum across the entire recording. 

However, I encountered another optimization issue due to the large volume of 
data in the frequency spectrum post-STFT. Calculating the dominant frequency, the 
value of the second harmonic component, and the standardized power spectrum 
across different frequency ranges was time-consuming. To improve efficiency, I split 
the data into smaller, 5-minute segments with zero overlap and processed them 
sequentially. 

I then applied the same three artifact detection rules described in Figure 10.4. To 
evaluate the algorithm's performance, I used the annotated artifact record within the 
HDF5 file to calculate the sensitivity and specificity. Since the primary goal of this 
algorithm is to improve the interpretation of PRx values, I ran the annotated artifact 
record through a 10-second averaging window (as in the PRx calculation) to filter out 
very short artifacts and those that do not affect PRx calculations. Given that the HDF5 
file had hard-coded artifact times, I converted them to match the format of the 
detected artifacts to ensure consistent temporal resolution. After consulting with 
clinicians, I set the acceptable range of mean arterial pressure (MAP) changes to ±5 
mmHg. If the absolute change in mean ABP was less than 5 mmHg and an artifact was 
annotated at that point, it was considered insignificant or too short. 

Unfortunately, the algorithm's sensitivity was around 65% and specificity was 
around 96%, which was unsatisfactory. Despite adjusting threshold values and 
modifying detection conditions, the performance remained low. Consequently, I 
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decided to rework the algorithm and use a different detection approach, see Figure 
11.1. 

 
Figure 11.1: Flowchart illustrating the data processing and artifact identification steps in the 

new algorithm for real data 

I shifted the algorithm's focus to detecting changes (differences) in the frequency 
spectrum. I retained all the steps from the original algorithm up to and including the 
calculation of the STFT. I then converted the STFT matrix to absolute values for easier 
processing and calculated the difference between adjacent columns (time steps). Next, 
I computed the sum of the absolute differences across all frequencies to obtain a 
single value for each time step. For future application on other patient records, I 
standardized this differential signal using a specific formula. I introduced a condition to 
identify significant changes in the frequency spectrum, which would account for the 
beginning and end of large artifacts as well as some short ones. Initially, I set a 
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threshold value of 5 for the standardized differential signal, marking points above this 
value as artifacts. 

Upon testing the first condition, I realized that detection was still not optimal, as 
it mainly identified the beginning and end of large artifacts. To consistently detect 
spectral regions affected by artifacts, I added a standard deviation calculation across 
all frequencies, yielding one value per time step. I set an initial threshold of 7 for 
detecting consistent spectral regions; if the standard deviation exceeded this value, it 
indicated an artifact at that time point. 

I developed a specialized function to determine the optimal threshold 
parameters, which I subsequently used as criteria for detecting artifacts. This function 
allowed me to systematically test various threshold values within a relevant range. I 
then detected artifacts based on these thresholds and computed the sensitivity and 
specificity against the artifacts annotated by the clinician colleague. A performance 
metric, derived from the sensitivity and specificity, was calculated to assess how 
closely these values approached 100%. The threshold values that minimized this metric 
(indicating the closest approach of sensitivity and specificity to 100%) were selected 
for the final version artifact detection algorithm. In the end, the threshold for 
evaluating the differential spectrum signal was set to 2, and the threshold for 
evaluating consistent spectral regions was set to 8. 

In the final step, I flagged all NaN values (corresponding to signal dropouts) and 
values outside the 0-300 mmHg range as artifacts. This resulted in a record of all 
detected artifacts (arrays of zeros and ones) matching the time range of the STFT 
spectrum. 

To assess the algorithm's effectiveness, I recalculated the sensitivity and 
specificity using the annotated artifacts averaged over a 10-second window. 

 
11.1.2 Detection of artifacts in ICP 
 

After successfully tuning the algorithm on the ABP signal, we decided to apply it 
to the ICP signal, assuming that the frequency spectrum of these signals would be 
similar, with only the amplitude differing. 

To evaluate the algorithm's efficiency on the ICP signal, I used an annotation file 
from our clinical specialists that thoroughly marked the artifacts in the ICP signal. I 
analyzed a 66-hour patient record containing these annotations. Since the detection 
algorithm was primarily designed to improve the interpretation of PRx values, I 
processed the annotated artifact data using a 10-second averaging window, as done 
with the ABP signal, to filter out short-duration artifacts that would not significantly 
impact PRx index calculations. The threshold for allowable changes in ICP artifacts was 
set at 5 mmHg. If the absolute change in mean ICP at a given time was less than 5 
mmHg and an artifact was annotated, the artifact was considered insignificant. 

The algorithm applied to the ICP signal was identical to the one used for the ABP 
signal, with adjustments only to the thresholds to optimize detection capability, 
sensitivity, and specificity. The same optimization function used for ABP was applied to 
fine-tune these thresholds. In the end, the threshold for evaluating the differential 
spectrum signal was set to 4, and the threshold for evaluating consistent spectral 
regions was set to 8. 
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11.2 Results 
 

The artifact detection algorithm, after undergoing significant fine-tuning and 
testing on real patient data, demonstrated varying levels of success in detecting 
artifacts in both ABP and ICP signals. 

 
11.2.1 Detection of artifacts in ABP 

 
The algorithm was first applied to ABP data, using a 9-day patient record with 

annotated artifacts provided by colleagues from the Neurointensive Care Unit at 
Masaryk Hospital. Initially, the algorithm's performance was suboptimal, with a 
sensitivity of approximately 65% and a specificity of around 96%. Despite efforts to 
adjust threshold values and detection conditions, these results were not satisfactory. 
Consequently, the detection approach was reworked to focus on changes in the 
frequency spectrum. 

After reworking the algorithm, sensitivity and specificity were reassessed. The 
final version of the algorithm, which included the calculation of differential spectrum 
signals and consistent spectral regions, achieved a notable improvement. The 
threshold for evaluating the differential spectrum signal was set to 2, and the 
threshold for evaluating consistent spectral regions was set to 8. The recalculated 
sensitivity was 92% and specificity was 90%. The figures below (Figures 11.2-11.3) 
show examples of raw and averaged ABP signals, annotated artifact signals averaged 
using a 10-second window, and artifacts detected by our algorithm. 

 
Figure 11.2: An example of complex artifact in real signal: A) ABP signal with 10-second 

averaging B) Annotated averaged artifact C) Detected artifact by the algorithm. 
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Figure 11.3: An example of insignificant artifact in real signal: A) ABP signal with 10-second 

averaging B) Annotated averaged artifact C) Detected artifact by the algorithm. 

11.2.2 Detection of artifacts in ICP 
 

The artifact detection algorithm was adapted and tested on a 66-hour patient 
record with detailed artifact annotations for the intracranial pressure signal. After fine-
tuning the thresholds specifically for the ICP data, the sensitivity and specificity of the 
algorithm were both near 80%. The differential spectrum signal threshold was set at 4, 
while the threshold for consistent spectral regions was maintained at 8. This 
performance demonstrates that the algorithm effectively detected clinically significant 
artifacts in the ICP signal, although with slightly reduced sensitivity compared to the 
ABP signal. These results underscore the algorithm's ability to identify relevant 
artifacts that could impact PRx calculations, filtering out those of lesser clinical 
importance. 
 
11.3 Discussion 
 

The updated algorithm for artifact detection in arterial blood pressure and 
intracranial pressure signals has shown very promising results. The recalculated 
sensitivity for ABP artifact detection reached 92%, with a specificity of 90%. These 
metrics indicate that the algorithm is now highly effective in identifying significant 
artifacts in real ABP signal that could impact clinical decision-making, particularly in the  
quality evaluation of the PRx index. 

The algorithm has been refined to focus on changes in the frequency spectrum, 
with carefully determined threshold values that optimize its performance. As more 
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patient records with annotated data become available, these threshold values can be 
adjusted using the optimization function, allowing for continuous improvement in the 
algorithm's sensitivity and specificity. This adaptability ensures that the algorithm 
remains effective and can be further updated to enhance its performance as additional 
data and clinical insights will be available. 

The detection of artifacts in the ICP signal, although incorporated into the study, 
was a secondary goal. This is because the ICP signal is inherently less prone to 
interference and artifacts compared to the arterial blood pressure signal. The nature of 
the ICP signal, combined with the effective 10-second averaging process, resulted in 
the elimination of many potential artifacts, reducing the overall need for a highly 
sensitive detection algorithm. Figure 11.4 illustrates this point by showing how many 
artifacts in the ICP signal disappear due to the 10-second averaging process [40]. 

 

 
Figure 11.4: Comparison of original annotated artifacts in ICP with artifacts after 10-second 

averaging 

The sensitivity and specificity of approximately 80% achieved in detecting ICP 
artifacts indicate that the algorithm performs well in identifying significant disruptions 
in the signal. However, given that many artifacts were already smoothed out or 
removed through averaging, the necessity for such rigorous detection is less critical in 
the context of ICP monitoring. 

Additionally, it is important to note that the primary focus of artifact detection 
remains on the ABP signal. This is because any part of the ABP signal that is interfered 
with or contains artifacts becomes unusable for calculating the PRx index. Therefore, 
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ensuring the accuracy and cleanliness of the ABP signal is primary, as it directly impacts 
the reliability of PRx calculations.  

Furthermore, it has to be noted that the clinical specialists carefully annotated 
artifacts, ensuring that they identified everything that, in their expert opinion, met the 
criteria for an artifact. Since manual annotation is an extremely time-consuming 
process, and because the annotated data was intended for multiple projects, including 
the detection of artifacts in ABP for PRx index calculations, the specialists approached 
the task with a high level of precision and thoroughness. After consulting with the 
clinical specialists, we set a threshold of ±5 mmHg for the 10-second averaging filter to 
refine the annotated artifact data. This threshold was designed to filter out short and 
insignificant artifacts, ensuring that only clinically significant changes in ABP were 
included in the annotations and used for the statistical evaluation of the detection 
algorithm. 

The main limitation of my detection algorithm is that its performance has been 
validated on only a single patient record. To optimize the detection thresholds, 
additional annotated data from various patients would be necessary. As I previously 
mentioned, annotating artifacts is extremely time-consuming, and clinical specialists 
have limited time for this task due to other more important responsibilities, such as 
patient care. However, the detection algorithm is now at a stage where, if new 
annotated data were available, recalculating thresholds would be straightforward. This 
would likely result in more universal thresholds with potentially higher sensitivity and 
specificity across different patients.  
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12 Python plug-in and PRx reliability index 
 
12.1 Methods 
 

After fine-tuning the detection algorithm on ABP signals, I implemented it within 
the ICM+ software, which supports custom Python functions for advanced statistical 
analysis and reporting on both recorded and real-time data. 

A primary objective of my work was to develop a "traffic light" system for 
evaluating quality of PRx indices, which we named the "PRx reliability index." This 
index indicates the percentage of artifacts within a given time interval, allowing 
physicians to assess the reliability of the PRx index at that moment. 

To calculate the PRx reliability index, accurate artifact detection is essential. I 
adapted my algorithm to meet the requirements for Python functions within ICM+. 
This involved creating a Python class that accepts the arterial pressure signal, sampling 
rate, and thresholds as input, and outputs the percentage of artifacts over a specified 
time interval. The "traffic light" display is achieved by plotting the signal on the Risk 
Chart in ICM+, where the chart colors change based on set thresholds. 

The prerequisites for using this plug-in in ICM+ include having a 32-bit version of 
Python installed on the same machine, enabling the use of custom Python functions in 
the ICM+ software license (via a special Python module), and installing essential 
Python libraries for data processing (numpy, scipy, stattools). The development 
environment included ICM+ (version 9.2.4.6, Cambridge Enterprise Ltd., Cambridge, 
UK), the Python module (version 1.1, Cambridge Enterprise Ltd., Cambridge, UK), and 
Python IDE (version 3.7, 32-bit, Python Software Foundation, Wilmington, Delaware, 
USA). 

Once all prerequisites were met, I proceeded to create the Python plug-in. ICM+ 
offers a user-friendly interface for Python script creation, allowing the insertion of 
custom functions into a predefined template. In this template, I defined the function 
name, description of my function, number of input signals (e.g., ABP, ICP), and 
additional function parameters. I set the detection algorithm thresholds as adjustable 
parameters so users can modify them without altering the Python code. If unchanged, 
the thresholds default to values I optimized during algorithm tuning. 

After setting the necessary parameters, ICM+ generated a Skeleton Python script 
(see Figure 12.1) and a Python plugin configuration file (see Figure 12.2). I did not alter 
the generated configuration file. Instead, I integrated my artifact detection and PRx 
reliability index calculation code into the Skeleton script, following the guidelines 
provided on the ICM+ website. 
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Figure 12.1: Skeleton Python script. 

 

 
Figure 12.2: Python plugin configuration file. 

To adapt my algorithm for use within ICM+, I made several modifications, 
including omitting optimization steps designed for large dataset processing, which is 
unnecessary for ICM+ data analysis. When using any function (whether built-in or 
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custom) to analyze data, ICM+ requires setting a computation window length and a 
window offset. For testing my Python function, I set the computation window length 
to 300 seconds and the window offset to 60 seconds, aligning with the default settings 
for PRx index computation in ICM+. 

I also removed functions related to optimizing thresholds, processing annotated 
artifacts, calculating sensitivity and specificity, and handling discontinuities. To address 
discontinuities within the ICM+ environment, I marked the first and last points of the 
detection matrix as 0 after detecting artifacts, as discontinuities typically affect only 
the edges of the analyzed signal segment. 

Most steps described in Section 11.1.1 were incorporated into the Python plug-in 
for ICM+. Once the detection matrix was generated, containing only zeros and ones, I 
calculated the percentage of ones relative to the total number of points. 

I further refined the Python plug-in using the ScriptLab tab, which allows for 
processing real signals with custom Python functions. This tab is particularly useful for 
identifying error messages and warnings during code execution, enabling direct edits 
within the Python IDE.  

Finally, I tested the Python plug-in on a retrospective anonymized record in 
ICM+. I selected a file from our anonymized records library, re-analyzed the raw data 
using the Calculations tab, limited the allowable ABP values to a range of 30 to 300 
mmHg, and applied the custom Python function to the ABP signal (see Figure 12.3). 
The results were plotted as a trend curve. For additional clarity, I added a Risk Chart, 
where the chart color changes according to the PRx reliability index values: a zero 
value corresponds to green, and a 50% value corresponds to red. 

 

 
Figure 12.3: Python plug-in setting 
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12.2 Results 
 

In this section, I developed a Python plug-in for the ICM+ software based on the 
algorithm I created for artifact detection in ABP signals. The input data for the 
algorithm includes the ABP signal, the threshold for the standardized differential 
spectrum signal, and the threshold for consistent spectral regions. The output of the 
Python plug-in is the PRx reliability index (see Figure 12.4), which represents the 
percentage of artifacts detected within a specified time interval. The final Python code 
and the XML configuration file for the plugin are provided in Appendix C. 
 

 
 

Figure 12.4: PRx reliability index in the ICM+ software 

To streamline processing and use of the Python plug-in, I saved an ICM+ 
configuration profile that can be applied to any patient record with a raw ABP signal. 
This profile includes the settings for calculating the PRx reliability index and displaying 
it on a Risk Chart, with the upper limit set to 50%. 
 
12.3 Discussion 
 

The development and integration of the Python plug-in for artifact detection in 
ABP signals within the ICM+ software represent a significant advancement in real-time 
and offline data analysis capabilities. This plug-in, based on a finely tuned detection 
algorithm, offers a robust tool for evaluating the quality of PRx indices, particularly 
through the creation of the PRx reliability index. 

One of the key features of this plug-in is its adaptability. The thresholds for 
artifact detection, as well as the computation window length, can be easily modified 
by users without the need to alter the underlying Python or XML code. This flexibility 
ensures that the plug-in can be applied to data from different patients and adapted to 
varying clinical scenarios. As more patient records with annotated data become 
available, the algorithm's thresholds can be fine-tuned using the built-in optimization 
functions, further enhancing its accuracy and reliability. 
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The PRx reliability index, displayed through a "traffic light" system on the Risk 
Chart in ICM+, provides a clear visual representation of the percentage of artifacts 
detected within a given time interval, typically 5 minutes. This index is crucial for 
clinicians as it helps them assess the reliability of the PRx index at any given moment. 
By setting a high limit of 50% on the Risk Chart, we align with the same threshold used 
for artifact calculation in the PRx index within the ICM+ software, ensuring consistency 
across different analyses. 

A significant advantage of this system is that it can be used for both online and 
offline data analysis. Whether analyzing real-time patient data or reviewing recorded 
signals, the plug-in provides fast feedback on the presence of artifacts, enhancing the 
decision-making process. 

The PRx reliability index, displayed through a "traffic light" system on the Risk 
Chart in ICM+, provides a clear visual representation of the percentage of artifacts 
detected within a given time interval, typically 5 minutes. This index is crucial for 
clinicians as it helps them assess the reliability of the PRx index at any given moment 
by showing the percentage of artifacts in real-time. By setting a high limit of 50% on 
the Risk Chart, we align with the typical missing value limit set within the ICM+ 
software for PRx calculations, ensuring consistency across different analyses. Although 
the ICM+ software accounts for a certain percentage of missing values in PRx 
calculations, it does not visibly display the percentage of artifacts or specify their 
nature. By integrating this plug-in, clinicians gain a more comprehensive understanding 
of the data's reliability, offering insights that are not immediately apparent in standard 
PRx calculations.  

During the development of the Python plug-in and the implementation of the 
PRx reliability index, I encountered several technical issues. The most significant 
problem was that the Python function I initially created wasn't communicating with 
ICM+ at all, and error messages related to memory allocation were being generated. 
At first, I suspected the issue was due to an incompatible version of the Python IDE 
with ICM+. I tried multiple different versions of Python, but none resolved the 
problem. I even modified the internals of my Python function in various ways and 
eventually simplified it to the point where it only output a single number, but it still 
didn't work. Finally, I discovered that the issue wasn't with my function or the Python 
IDE, but rather with the incompatibility between the versions of the Python module 
and the ICM+ software. After updating ICM+ to the latest version, my Python plug-in 
started working correctly. 

The Python plug-in I developed also has some limitations. The primary limitation, 
as discussed in Chapter 11, is that the detection algorithm on which the plug-in is 
based has been validated and tuned using annotated data from only a single patient. 
To optimize the detection thresholds, additional annotated data from multiple patients 
would be needed. Another limitation is that, because I do not have access to the 
source code of ICM+ or insight into how it handles and executes my function, I cannot 
guarantee 100% functionality or ensure that the results will be the same as when using 
the same functions in a standard Python IDE.  
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13 Conclusions 
 

In this work, I explored artifact detection in arterial blood pressure and 
intracranial pressure signals, as well as how these artifacts affect the PRx index. The 
main achievement was the development of an algorithm for detecting artifacts in real 
ABP signals. This algorithm was tested on a 9-day patient dataset, achieving sensitivity 
and specificity greater than 90%. Additionally, I created a Python plug-in for the ICM+ 
software based on this algorithm, which calculates a PRx reliability index. This index 
could significantly improve the accuracy of interpreting the quality of the PRx index. 

I began by analyzing HDF5 files containing ABP and ICP signals from the ICM+ 
software, addressing various issues with these files. I wrote a pseudonymization script 
to remove personal identifiers and shift the timeline, ensuring the data was protected 
against unauthorized re-identification. I also investigated the impact of downsampling 
on the frequency spectrum due to automatic downsampling when exporting to HDF5 
files. Since we work with ABP and ICP signals, I found that downsampling did not 
significantly affect the frequency spectrum. 

Next, I examined how artifacts in ABP and ICP signals influence the circadian 
variability of the PRx index. I analyzed data from 19 patients without labeled artifacts 
and found that PRx variability was higher during certain morning and evening hours 
(see Figure 3.1). However, without more labeled artifacts (annotated patient records), 
we cannot conclusively attribute these variations to artifacts. 

I then simulated various types of stereotypical artifacts to help develop and test 
the artifact detection algorithm. We also studied the effect of these simulated artifacts 
on the PRx index to determine which artifacts should be detected and which could be 
ignored. Additionally, we assessed the impact of high-frequency noise on PRx and 
confirmed that it has an insignificant effect, as it is filtered out by the 10-second 
averaging process during PRx calculation. 

To detect artifacts, I developed an algorithm using short-time Fourier transform 
(STFT). Initially, I focused on selecting the optimal calculation window and chose a 5-
second window, which was sufficient for detecting changes in the frequency spectrum 
caused by both complex artifacts and short interferences.  

I then worked on an efficient method to evaluate changes in the frequency 
spectrum for artifact detection. The initial version of the algorithm showed good 
results on rectangular and sawtooth artifacts, achieving sensitivity and specificity 
above 93%. However, it was less effective at detecting baseline drift artifacts and fast 
impulses. Since these artifacts do not significantly affect the PRx index, and clinicians 
often disagreed on their artificial nature, this was not a major limitation. 

The next step was to validate the algorithm using real patient data. The original 
algorithm, with a sensitivity of around 65%, was less effective on real ABP data, so I 
developed and tested a new version that improved sensitivity and specificity to over 
90%. Artifact detection in the ICP signal was a secondary objective because ICP is less 
prone to interference compared to ABP. Additionally, the 10-second averaging process 
effectively filtered out many minor artifacts, reducing the need for a highly sensitive 
detection algorithm. Nevertheless, the algorithm performed well, achieving about 80% 
sensitivity and specificity for detecting significant disruptions in ICP. Although the 
detection algorithm is not universal and targets only clinically significant artifacts, I 
believe it is sufficient for assessing the quality of PRx indices. 
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Finally, I integrated the detection algorithm into a Python plug-in for the ICM+ 
software. The plug-in outputs a PRx reliability index, helping to assess the quality of 
PRx indices. It can help analyze offline patient records and potentially be used for real-
time analysis. 

This Python plug-in and the detection algorithm can be further adapted and 
improved as more annotated patient data becomes available. The algorithm's 
thresholds can be fine-tuned using built-in optimization functions, further enhancing 
its accuracy and reliability. 
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Annex A: Short-time Fourier transform for artifact detection 
 
Rectangular artifact: 
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Saw tooth artifact: 
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Isoline drift artifact: 
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Constant ICP artifact:  
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Fast impulse artifact: 
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Annex B: Examples of the tested parameters from STFT on 
different simulated artifacts 
 

 
Figure B.1: Demonstration of tested parameters on the signal with saw tooth artifact: sum, 

mean, standard deviation (STD), median, median frequency (MDF) 
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Figure B.2: Demonstration of tested parameters on the signal with baseline drift artifact: sum, 

mean, standard deviation (STD), median, median frequency (MDF) 
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Figure B.3: Demonstration of tested parameters on the signal with fast impulse artifact: sum, 

mean, standard deviation (STD), median, median frequency (MDF) 
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Annex C: Python plug-in for ICM+ software 
 
Python script: ICMP_ArtifactPercent.py 
 
#import ... 
import numpy as np 
import scipy.signal as signal 
import stattools as st 
 
class ArtifactPercent: 
 
    # DO NOT MODIFY THIS METHOD. It is a part of the ICM+--Python interface. 
    def set_parameter(self, param_name, param_value): 
        setattr(self, param_name, param_value) 
 
    # You can append your own code to the constructor, if needed. 
    # You should not set here values of parameters declared in your XML 
    # configuration file because ICM+ will do it for you. 
    # You will have to add your own code, only if you need to initialise some 
    # extra data structures which were not declared in the XML config file. 
    def __init__(self): 
        self.variables = [] 
        self.sampling_freq = None 
        self.file_path = None 
        self.threshold1 = 2       # threshold1 
        self.threshold2 = 8       # threshold1 
 
    # You can append your own code to the destructor but most likely 
    # you will not need it. 
    def __del__(self): 
        pass 
 
    # 'calculate' is the main work-horse function. 
    # It is called with a data buffer (one or more) of size corresponding to the Calculation 
Window 
    # It must return one floating-point number 
    # It take the following parameters: 
    # sig1 - input variable/signal 1 
    # ts_time - part of the data time stamp - number of milliseconds since midnight 
    # ts_date - Part of the data time stamp - One plus number of days since 1/1/0001 
    # It can also use the data sampling frequency: 
    #    self.sampling_freq 
 
 
 
    def calculate(self, sig1, ts_time, ts_date): 
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        sig1 = np.array(sig1) 
        sig1 = np.nan_to_num(sig1, nan = 5000) 
 
        window_size = int(5 * self.sampling_freq) 
        f, t, Zxx = signal.stft(sig1, fs=self.sampling_freq, nperseg=window_size) 
 
        detected_artifacts = np.zeros(len(t), dtype=int) 
        magnitude = np.abs(Zxx) 
        magnitude_diff = np.diff(magnitude, axis=1) 
        change_signal = np.sum(np.abs(magnitude_diff), axis=0) 
        change_signal = np.nan_to_num(change_signal, nan = 100) 
         
        change_signal_mean = change_signal.mean() 
        change_signal_std = change_signal.std() 
        standardized_change_signal = (change_signal - change_signal_mean) / 
change_signal_std 
 
        threshold = self.threshold1 
        artifact_times = t[1:][standardized_change_signal > threshold] 
        artifact_indices = np.searchsorted(t[1:], artifact_times).astype(int) 
 
        consistency_threshold = self.threshold2 
        spectrum_variability = np.std(magnitude, axis=0) 
        consistent_regions = t[spectrum_variability > consistency_threshold] 
        consistent_indices = np.searchsorted(t, consistent_regions).astype(int) 
 
        detected_artifacts[artifact_indices] = 1 
         
        if len(consistent_indices) > 0: 
            detected_artifacts[consistent_indices] = 1 
 
        #nan_indices = np.argwhere(np.isnan(spectrum_variability)).flatten() 
        #if nan_indices.size > 0: 
        #   detected_artifacts[nan_indices] = 1 
         
        detected_artifacts[0] = 0 
        detected_artifacts[-1] = 0 
 
        artifact_percentage = np.mean(detected_artifacts) * 100 
 
        result = float(artifact_percentage) 
         
        return result 
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Python plug-in configuration file: ICMP_ArtifactPercent.xml 
 
<?xml version = "1.0"?> 
 
<PyToICMPlusConfig> 
   <Function Name = "ArtifactPercent" Type = "Stats" SignalsCount = "1"> 
      <GUID>{The value is anonymized}</GUID> 
      <Description>This function detect artifacts in ABP or ICP signal and returns the 
percent of artifacts in time  
interval.</Description> 
      <Parameter ShortName = "threshold1" IsMandatory = "True"> 
         <Caption>threshold1</Caption> 
         <Description>threshold for evaluating the differential spectrum 
signal</Description> 
         <Type Name = "Float" Min = "0" Max = "0" DefaultValue = "2"/> 
      </Parameter> 
      <Parameter ShortName = "threshold2" IsMandatory = "True"> 
         <Caption>threshold2</Caption> 
         <Description>threshold for evaluating consistent spectral regions</Description> 
         <Type Name = "Float" Min = "0" Max = "0" DefaultValue = "8"/> 
      </Parameter> 
   </Function> 
</PyToICMPlusConfig> 


